KEY EQUATIONS

CHAPTER 2

1. The balance sheet identity or equation:

Assets = Liabilities

+ Shareholders' equity

2. The income statement equation:

Revenues - Expenses $=$ Income
3. The cash flow identity:

Cash flow from assets $=$
Cash flow to creditors +
Cash flow to stockholders

where

a. Cash flow from assets $=$ Operating cash
flow (OCF) - Net capital spending -
Change in net working capital (NWC)
(1) Operating cash flow $=$ Earnings before interest and taxes (EBIT) + Depreciation - Taxes
(2) Net capital spending = Ending net fixed assets - Beginning net fixed assets + Depreciation
(3) Change in net working capital $=$ Ending NWC - Beginning NWC
b. Cash flow to creditors = Interest paid - Net new borrowing
c. Cash flow to stockholders = Dividends paid - Net new equity raised

CHAPTER 3

1. The current ratio:

$$
\begin{equation*}
\text { Current ratio }=\frac{\text { Current assets }}{\text { Current liabilities }} \tag{3.1}
\end{equation*}
$$

2. The quick or acid-test ratio:

$$
\text { Quick ratio }=\frac{\text { Current assets }- \text { Inventory }}{\text { Current liabilities }}[3.2]
$$

3. The cash ratio:

$$
\begin{equation*}
\text { Cash ratio }=\frac{\text { Cash }}{\text { Current liabilities }} \tag{3.3}
\end{equation*}
$$

4. The ratio of net working capital to total assets:

> Net working capital to total assets
> $=\frac{\text { Net working capital }}{\text { Total assets }}$
5. The interval measure:

Interval measure

$$
\begin{equation*}
=\frac{\text { Current assets }}{\text { Average daily operating costs }} \tag{3.5}
\end{equation*}
$$

6. The total debt ratio:

Total debt ratio
$=\frac{\text { Total assets }- \text { Total equity }}{\text { Total assets }}$
7. The debt-equity ratio:

> Debt-equity ratio
> $=$ Total debt/Total equity
8. The equity multiplier:

> Equity multiplier
> $=$ Total assets/Total equity
9. The long-term debt ratio:

Long-term debt ratio
$=\frac{\text { Long-term debt }}{\text { Long-term debt }+ \text { Total equity }}$
10. The times interest earned (TIE) ratio:

Times interest earned ratio $=\frac{\text { EBIT }}{\text { Interest }}$
[3.10]
11. The cash coverage ratio:

Cash coverage ratio
$=\frac{\text { EBIT }+ \text { Depreciation }}{\text { Interest }}$
12. The inventory turnover ratio:

Inventory turnover
$=\frac{\text { Cost of goods sold }}{\text { Inventory }}$
13. The average days' sales in inventory:

Days' sales in inventory

$$
\begin{equation*}
=\frac{365 \text { days }}{\text { Inventory turnover }} \tag{3.13}
\end{equation*}
$$

14. The receivables turnover ratio:

Receivables turnover

$$
\begin{equation*}
=\frac{\text { Sales }}{\text { Accounts receivable }} \tag{3.14}
\end{equation*}
$$

15. The days' sales in receivables:

Days' sales in receivables

$$
\begin{equation*}
=\frac{365 \text { days }}{\text { Receivables turnover }} \tag{3.15}
\end{equation*}
$$

16. The net working capital (NWC) turnover ratio:

$$
\begin{equation*}
\text { NWC turnover }=\frac{\text { Sales }}{\text { NWC }} \tag{3.16}
\end{equation*}
$$

17. The fixed asset turnover ratio:

$$
\begin{equation*}
\text { Fixed asset turnover }=\frac{\text { Sales }}{\text { Net fixed assets }} \tag{3.17}
\end{equation*}
$$

18. The total asset turnover ratio:

$$
\begin{equation*}
\text { Total asset turnover }=\frac{\text { Sales }}{\text { Total assets }} \tag{3.18}
\end{equation*}
$$

19. Profit margin:

$$
\begin{equation*}
\text { Profit margin }=\frac{\text { Net income }}{\text { Sales }} \tag{3.19}
\end{equation*}
$$

20. Return on assets (ROA):

Return on assets $=\frac{\text { Net income }}{\text { Total assets }}$
21. Return on equity (ROE):

$$
\begin{equation*}
\text { Return on equity }=\frac{\text { Net income }}{\text { Total equity }} \tag{3.21}
\end{equation*}
$$

22. The price-earnings (PE) ratio:

PE ratio $=\frac{\text { Price per share }}{\text { Earnings per share }}$
23. The market-to-book ratio:

Market-to-book ratio
$=\frac{\text { Market value per share }}{\text { Book value per share }}$
24. Enterprise value:

Enterprise value $=$ Total market value of the stock + Book value of all liabilities Cash
25. The EBITDA ratio:

EBITDA ratio $=\frac{\text { Enterprise value }}{\text { EBITDA }}$
26. The Du Pont identity:

ROE $=\underbrace{\frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Assets }}}_{\text {Return on assets }} \times \frac{\text { Assets }}{\text { Equity }}$
ROE $=$ Profit margin
\times Total asset turnover
\times Equity multiplier

CHAPTER 4

1. The dividend payout ratio:

Dividend payout ratio
= Cash dividends/Net income
2. The internal growth rate:

$$
\begin{equation*}
\text { Internal growth rate }=\frac{\mathrm{ROA} \times b}{1-\mathrm{ROA} \times b} \tag{4.2}
\end{equation*}
$$

3. The sustainable growth rate:

$$
\begin{equation*}
\text { Sustainable growth rate }=\frac{\mathrm{ROE} \times b}{1-\mathrm{ROE} \times b} \tag{4.3}
\end{equation*}
$$

CHAPTER 5

1. The future value of $\$ 1$ invested for t periods at rate of r per period:

Future value $=\$ 1 \times(1+r)^{t}$
2. The present value of $\$ 1$ to be received t periods in the future at a discount rate of r :

$$
\begin{equation*}
\mathrm{PV}=\$ 1 \times\left[1 /(1+r)^{t}\right]=\$ 1 /(1+r)^{t} \tag{5.2}
\end{equation*}
$$

3. The relationship between future value and present value (the basic present value equation):

$$
\begin{align*}
& \mathrm{PV} \times(1+r)^{t}=\mathrm{FV}_{t} \tag{5.3}\\
& \mathrm{PV}=\mathrm{FV}_{t} /(1+r)^{t}=\mathrm{FV}_{t} \times\left[1 /(1+r)^{t}\right]
\end{align*}
$$

CHAPTER 6

1. The present value of an annuity of C dollars per period for t periods when the rate of return or interest rate is r :

Annuity present value

$$
\begin{align*}
& =C \times\left(\frac{1-\text { Present value factor }}{r}\right) \\
& =C \times\left\{\frac{1-\left[1 /(1+r)^{t}\right]}{r}\right\} \tag{6.1}
\end{align*}
$$

2. The future value factor for an annuity:

$$
\begin{align*}
& \text { Annuity FV factor } \\
& =(\text { Future value factor }-1) / r \tag{6.2}\\
& =\left[(1+r)^{t}-1\right] / r
\end{align*}
$$

3. Annuity due value $=$ Ordinary annuity value $\times(1+r)$
4. Present value for a perpetuity:

$$
\begin{equation*}
\mathrm{PV} \text { for a perpetuity }=C / r=C \times(1 / r) \tag{6.4}
\end{equation*}
$$

5. Growing annuity present value

$$
\begin{equation*}
=C\left[\frac{1-\left(\frac{1+g}{1+r}\right)^{t}}{r-g}\right] \tag{6.5}
\end{equation*}
$$

6. Growing perpetuity present value

$$
\begin{equation*}
=\frac{C}{r-g} \tag{6.6}
\end{equation*}
$$

7. Effective annual rate (EAR), where m is the number of times the interest is compounded during the year:

$$
\begin{equation*}
\text { EAR }=[1+(\text { Quoted rate } / m)]^{m}-1 \tag{6.7}
\end{equation*}
$$

8. Effective annual rate (EAR), where q stands for the continuously compounded quoted rate:

$$
\mathrm{EAR}=e^{q}-1
$$

CHAPTER 7

1. Bond value if bond has (1) a face value of F paid at maturity, (2) a coupon of C paid per period, (3) t periods to maturity, and (4) a yield of r per period:

Bond value

$$
\begin{equation*}
=C \times\left[1-1 /(1+r)^{t}\right] / r+F /(1+r)^{t} \tag{7.1}
\end{equation*}
$$

Bond value

$$
=\stackrel{\text { Present value }}{\text { of the coupons }}+\begin{gathered}
\text { Present value } \\
\text { of the face amount }
\end{gathered}
$$

2. The Fisher effect:

$$
\begin{align*}
& 1+R=(1+r) \times(1+h) \tag{7.2}\\
& R=r+h+r \times h \tag{7.3}\\
& R \approx r+h \tag{7.4}
\end{align*}
$$

CHAPTER 8

1. The dividend growth model:

$$
\begin{equation*}
P_{0}=\frac{D_{0} \times(1+g)}{R-g}=\frac{D_{1}}{R-g} \tag{8.3}
\end{equation*}
$$

2. Required return:
$R=D_{1} / P_{0}+g$

CHAPTER 9

1. Net present value (NPV):

NPV = Present value of future cash flows - Investment cost
2. Payback period:

Payback period $=$ Number of years that pass before the sum of an investment's cash flows equals the cost of the investment
3. Discounted payback period:

Discounted payback period = Number of years that pass before the sum of an investment's discounted cash flows equals the cost of the investment
4. The average accounting return (AAR):
$\mathrm{AAR}=\frac{\text { Average net income }}{\text { Average book value }}$
5. Internal rate of return (IRR):
$\operatorname{IRR}=$ Discount rate of required return such that the net present value of an investment is zero
6. Profitability index:

Profitability index $=\frac{\text { PV of cash flows }}{\text { Cost of investment }}$

CHAPTER 10

1. Bottom-up approach to operating cash flow (OCF):

OCF $=$ Net income + Depreciation
2. Top-down approach to operating cash flow (OCF):

OCF $=$ Sales - Costs - Taxes
3. Tax shield approach to operating cash flow (OCF):

$$
\begin{align*}
\mathrm{OCF}= & (\text { Sales }- \text { Costs }) \times(1-T) \\
& + \text { Depreciation } \times T \tag{10.3}
\end{align*}
$$

CHAPTER 11

1. Accounting break-even level:

$$
\begin{equation*}
Q=(\mathrm{FC}+D) /(P-v) \tag{11.1}
\end{equation*}
$$

2. Relationship between operating cash flow (OCF) and sales volume:

$$
\begin{equation*}
Q=(\mathrm{FC}+\mathrm{OCF}) /(P-v) \tag{11.3}
\end{equation*}
$$

3. Cash break-even level:

$$
Q=\mathrm{FC} /(P-v)
$$

4. Financial break-even level:

$$
Q=\left(\mathrm{FC}+\mathrm{OCF}^{*}\right) /(P-v)
$$

where

$$
\mathrm{OCF}^{*}=\text { Zero NPV cash flow }
$$

5. Degree of operating leverage (DOL):

$$
\begin{equation*}
\mathrm{DOL}=1+\mathrm{FC} / \mathrm{OCF} \tag{11.4}
\end{equation*}
$$

CHAPTER 12

1. Variance of returns, $\operatorname{Var}(R)$ or σ^{2} :

$$
\begin{align*}
\operatorname{Var}(R)= & \frac{1}{T-1}\left[\left(R_{1}-\bar{R}\right)^{2}+\cdots\right. \\
& \left.+\left(R_{T}-\bar{R}\right)^{2}\right] \tag{12.3}
\end{align*}
$$

2. Standard deviation of returns, $\mathrm{SD}(R)$ or σ :

$$
\mathrm{SD}(R)=\sqrt{\operatorname{Var}(R)}
$$

CHAPTER 13

1. Risk premium:

> Risk premium $=$ Expected return
> - Risk-free rate
[13.1]
2. Expected return on a portfolio:

$$
\begin{align*}
\mathrm{E}\left(R_{P}\right)= & x_{1} \times \mathrm{E}\left(R_{1}\right)+x_{2} \times \mathrm{E}\left(R_{2}\right)+\cdots \\
& +x_{n} \times \mathrm{E}\left(R_{n}\right) \tag{13.2}
\end{align*}
$$

3. The reward-to-risk ratio:

$$
\text { Reward-to-risk ratio }=\frac{\mathrm{E}\left(R_{i}\right)-R_{f}}{\beta_{i}}
$$

4. The capital asset pricing model (CAPM):

$$
\begin{equation*}
\mathrm{E}\left(R_{i}\right)=R_{f}+\left[\mathrm{E}\left(R_{M}\right)-R_{f}\right] \times \beta_{i} \tag{13.7}
\end{equation*}
$$

CHAPTER 14

1. Required return on equity, R_{E} (dividend growth model):

$$
\begin{equation*}
R_{E}=D_{1} / P_{0}+g \tag{14.1}
\end{equation*}
$$

2. Required return on equity, $R_{E}(\mathrm{CAPM})$:

$$
\begin{equation*}
R_{E}=R_{f}+\beta_{E} \times\left(R_{M}-R_{f}\right) \tag{14.2}
\end{equation*}
$$

3. Required return on preferred stock, R_{P} :

$$
\begin{equation*}
R_{P}=D / P_{0} \tag{14.3}
\end{equation*}
$$

4. The weighted average cost of capital (WACC):

$$
\begin{align*}
& \mathrm{WACC}=(E / V) \times R_{E}+(D / V) \times R_{D} \\
& \times\left(1-T_{C}\right) \tag{14.6}
\end{align*}
$$

5. Weighted average flotation cost, f_{A} :

$$
\begin{equation*}
f_{A}=\frac{E}{V} \times f_{E}+\frac{D}{V} \times f_{D} \tag{14.8}
\end{equation*}
$$

CHAPTER 15

1. Rights offerings:
a. Number of new shares:

Number of new shares
$=\frac{\text { Funds to be raised }}{\text { Subscription price }}$
b. Number of rights needed:

Number of rights needed to buy a share of stock
$=\frac{\text { Old shares }}{\text { New shares }}$
c. Value of a right:

Value of a right $=$ Rights-on price - Ex-rights price

CHAPTER 16

1. Modigliani-Miller propositions (no taxes):
a. Proposition I:

$$
V_{L}=V_{U}
$$

b. Proposition II:

$$
\begin{equation*}
R_{E}=R_{A}+\left(R_{A}-R_{D}\right) \times(D / E) \tag{16.1}
\end{equation*}
$$

2. Modigliani-Miller propositions (with taxes):
a. Value of the interest tax shield:

Present value of the interest tax shield

$$
\begin{align*}
& =\left(T_{C} \times D \times R_{D}\right) / R_{D} \tag{16.2}\\
& =T_{C} \times D
\end{align*}
$$

b. Proposition I:

$$
\begin{equation*}
V_{L}=V_{U}+T_{C} \times D \tag{16.3}
\end{equation*}
$$

c. Proposition II:

$$
\begin{align*}
& R_{E}=R_{U}+\left(R_{U}-R_{D}\right) \times(D / E) \\
& \times\left(1-T_{C}\right) \tag{16.4}
\end{align*}
$$

CHAPTER 18

1. The operating cycle:

Operating cycle $=$ Inventory period

+ Accounts receivable period

2. The cash cycle:

Cash cycle $=$ Operating cycle

- Accounts payable period

CHAPTER 19

1. Float measurement:
a. Average daily float:

Average daily float $=\frac{\text { Total float }}{\text { Total days }}$
b. Average daily float:

Average daily float
$=$ Average daily receipts
\times Weighted average delay
2. The Baumol-Allais-Tobin (BAT) model:
a. Opportunity costs:

Opportunity costs $=(C / 2) \times R$
[19A.1]
b. Trading costs:

Trading costs $=(T / C) \times F$
c. Total cost:

Total cost $=$ Opportunity costs

+ Trading costs
[19A.3]
d. The optimal initial cash balance:

$$
\begin{equation*}
C^{*}=\sqrt{(2 T \times F) / R} \tag{19A.4}
\end{equation*}
$$

3. The Miller-Orr model:
a. The optimal cash balance:

$$
C^{*}=L+\left(3 / 4 \times F \times \sigma^{2} / R\right)^{1 / 3}
$$

b. The upper limit:
$U^{*}=3 \times C^{*}-2 \times L$
[19A.6]

CHAPTER 20

1. The size of receivables:

Accounts receivable
$=$ Average daily sales $\times \mathrm{ACP}$
[20.1]
2. NPV of switching credit terms:
a. Present value of switching:

$$
\begin{equation*}
\mathrm{PV}=\left[(P-v)\left(Q^{\prime}-Q\right)\right] / R \tag{20.4}
\end{equation*}
$$

b. Cost of switching:

$$
\begin{equation*}
\text { Cost of switching }=P Q+v\left(Q^{\prime}-Q\right) \tag{20.5}
\end{equation*}
$$

c. NPV of switching:

$$
\begin{align*}
\text { NPV of switching }= & -\left[P Q+v\left(Q^{\prime}-Q\right)\right] \\
& +[(P-v) \tag{20.6}\\
& \left.\times\left(Q^{\prime}-Q\right)\right] / R
\end{align*}
$$

3. NPV of granting credit:
a. With no repeat business:

$$
\begin{equation*}
\mathrm{NPV}=-v+(1-\pi) P /(1+R) \tag{20.8}
\end{equation*}
$$

b. With repeat business:

$$
\begin{equation*}
\mathrm{NPV}=-v+(1-\pi)(P-v) / R \tag{20.9}
\end{equation*}
$$

4. The economic order quantity (EOQ) model:
a. Total carrying costs:

Total carrying costs
$=$ Average inventory
\times Carrying costs per unit

$$
=(Q / 2) \times \mathrm{CC}
$$

[20.10]
b. Total restocking costs:

Total restocking costs
$=$ Fixed cost per order
\times Number of orders $=F \times(T / Q)$
c. Total costs:

$$
\begin{align*}
\text { Total costs }= & \text { Carrying costs } \tag{20.11}\\
& + \text { Restocking costs } \\
= & (Q / 2) \times \mathrm{CC} \\
& +F \times(T / Q) \tag{20.12}
\end{align*}
$$

d. The optimal order size Q^{*} :

$$
\begin{equation*}
Q^{*}=\sqrt{\frac{2 T \times F}{\mathrm{CC}}} \tag{20.15}
\end{equation*}
$$

CHAPTER 21

1. Purchasing power parity (PPP):

$$
\begin{equation*}
\mathrm{E}\left(S_{t}\right)=S_{0} \times\left[1+\left(h_{F C}-h_{U S}\right)\right]^{t} \tag{21.3}
\end{equation*}
$$

2. Interest rate parity (IRP):
a. Exact, single period:

$$
\begin{equation*}
F_{1} / S_{0}=\left(1+R_{F C}\right) /\left(1+R_{U S}\right) \tag{21.4}
\end{equation*}
$$

b. Approximate, multiperiod:

$$
\begin{equation*}
F_{t}=S_{0} \times\left[1+\left(R_{F C}-R_{U S}\right)\right]^{t} \tag{21.7}
\end{equation*}
$$

3. Uncovered interest parity (UIP):

$$
\begin{equation*}
\mathrm{E}\left(S_{t}\right)=S_{0} \times\left[1+\left(R_{F C}-R_{U S}\right)\right]^{t} \tag{21.9}
\end{equation*}
$$

4. International Fisher effect (IFE):

$$
\begin{equation*}
R_{U S}-h_{U S}=R_{F C}-h_{F C} \tag{21.10}
\end{equation*}
$$

