APPENDIX

KEY EQUATIONS

CHAPTER 2

1. The balance sheet identity or equation: Assets = Liabilities		
+ Shareholders' equity [2	2.1]	
2. The income statement equation: Revenues - Expenses = Income [2	2.2]	
3. The cash flow identity: Cash flow from assets = Cash flow to creditors + [2 Cash flow to stockholders	2.3]	
 where a. Cash flow from assets = Operating cash flow (OCF) - Net capital spending - Change in net working capital (NWC) (1) Operating cash flow = Earnings before interest and taxes (EBIT) + Depreciation - Taxes (2) Net capital spending = Ending net fixed assets - Beginning net fixed assets + Depreciation (3) Change in net working capital = Ending NWC 		
b. Cash flow to creditors = Interest paid $-N$	Vet	
new borrowing	.,	
 Cash flow to stockholders = Dividends pa – Net new equity raised 	ud	

CHAPTER 3

1. The current ratio:	
Current ratio = $\frac{\text{Current assets}}{\text{Current liabilities}}$	[3.1]

2. The quick or acid-test ratio:

$$Quick ratio = \frac{Current assets - Inventory}{Current liabilities} [3.2]$$

3. The cash ratio:

Cash ratio =
$$\frac{Cash}{Current liabilities}$$
 [3.3]

4. The ratio of net working capital to total assets: Net working capital to total assets	
$= \frac{\text{Net working capital}}{\text{Total assets}}$	[3.4]
5. The interval measure: Interval measure	
$= \frac{\text{Current assets}}{\text{Average daily operating costs}}$	[3.5]
6. The total debt ratio: Total debt ratio $= \frac{\text{Total assets} - \text{Total equity}}{\text{Total assets}}$	[3.6]
 7. The debt–equity ratio: Debt–equity ratio = Total debt/Total equity 	[3.7]
8. The equity multiplier:Equity multiplier= Total assets/Total equity	[3.8]
9. The long-term debt ratio: Long-term debt ratio $= \frac{\text{Long-term debt}}{\text{Long-term debt} + \text{Total equity}}$	[3.9]
10. The times interest earned (TIE) ratio: Times interest earned ratio = $\frac{\text{EBIT}}{\text{Interest}}$	[3.10]
11. The cash coverage ratio: Cash coverage ratio $= \frac{\text{EBIT} + \text{Depreciation}}{\text{Interest}}$	[3.11]
12. The inventory turnover ratio: Inventory turnover $= \frac{\text{Cost of goods sold}}{\text{Inventory}}$	[3.12]
13. The average days' sales in inventory:	

Days' sales in inventory = $\frac{365 \text{ days}}{\text{Inventory turnover}}$ [3.13]

B-1

14. The receivables turnover ratio:	
Receivables turnover	
$=\frac{\text{Sales}}{\text{Accounts receivable}}$	[3.14]
15. The days' sales in receivables:	
Days' sales in receivables	
_ 365 days	[3 15]
Receivables turnover	[3.13]
16. The net working capital (NWC) turnover ratio:	
NWC turnover $= \frac{\text{Sales}}{\text{NWC}}$	[3.16]
17. The fixed asset turnover ratio:	
Fixed asset turnover $=$ $\frac{\text{Sales}}{\text{Net fixed assets}}$	[3.17]
18. The total asset turnover ratio:	
Total asset turnover = $\frac{\text{Sales}}{\text{Total assets}}$	[3.18]
19. Profit margin:	
Profit margin = $\frac{\text{Net income}}{\text{Sales}}$	[3.19]
20. Return on assets (ROA):	
Return on assets = $\frac{\text{Net income}}{\text{Total assets}}$	[3.20]
21. Return on equity (ROE):	
Return on equity = $\frac{\text{Net income}}{\text{Total equity}}$	[3.21]
22. The price–earnings (PE) ratio:	
$PE ratio = \frac{Price per share}{Earnings per share}$	[3.22]
23. The market-to-book ratio:	
Market-to-book ratio	
Market value per share	[2 22]
Book value per share	[3.23]
24. Enterprise value:	
Enterprise value = Total market value of the stock +	
Book value of all liabilities –	
Cash	[3.24]
25. The EBITDA ratio:	
$EBITDA ratio = \frac{Enterprise value}{EBITDA}$	[3.25]
26. The Du Pont identity:	
$ROE = \frac{\text{Net income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Assets}} \times \frac{\text{Assets}}{\text{Equity}}$	[3.26]
Return on assets	
ROE = Profit margin	
× Iotal asset turnover	
× Equity multiplier	

CHAPTER 4

 The dividend payout ratio: Dividend payout ratio
 = Cash dividends/Net income 2. The internal growth rate: Internal growth rate = $\frac{\text{ROA} \times b}{1 - \text{ROA} \times b}$ [4.2]

3. The sustainable growth rate: Sustainable growth rate = $\frac{\text{ROE} \times b}{1 - \text{ROE} \times b}$ [4.3]

CHAPTER 5

1.	The future value of \$1 invested for <i>t</i> periods at rate	
	of <i>r</i> per period:	
	Future value = $\$1 \times (1 + r)^t$	[5.1]
2.	The present value of \$1 to be received t periods in	

the future at a discount rate of *r*:

$$PV = \$1 \times [1/(1 + r)^{t}] = \$1/(1 + r)^{t}$$
[5.2]

3. The relationship between future value and present value (the basic present value equation): $PV \times (1 + r)^t = FV_t$ $PV = FV_t/(1 + r)^t = FV_t \times [1/(1 + r)^t]$ [5.3]

] CHAPTER 6

 The present value of an annuity of C dollars per period for t periods when the rate of return or interest rate is r: Annuity present value

$$= C \times \left(\frac{1 - \text{Present value factor}}{r}\right)$$
$$= C \times \left\{\frac{1 - \left[\frac{1}{(1 + r)'}\right]}{r}\right\}$$
[6.1]

2. The future value factor for an annuity: Annuity FV factor

= (Future value factor
$$-1$$
)/r [6.2]
= $[(1 + r)^{t} - 1]/r$

[6.3]

- 3. Annuity due value = Ordinary annuity value $\times (1 + r)$
- **4.** Present value for a perpetuity: PV for a perpetuity = $C/r = C \times (1/r)$ [6.4]
- 5. Growing annuity present value

$$= C \left[\frac{1 - \left(\frac{1+g}{1+r}\right)^{2}}{r-g} \right]$$
 [6.5]

6. Growing perpetuity present value

$$=\frac{C}{r-g}$$
[6.6]

- 7. Effective annual rate (EAR), where *m* is the number of times the interest is compounded during the year: EAR = [1 + (Quoted rate/m)]^m 1 [6.7]
- 8. Effective annual rate (EAR), where *q* stands for the continuously compounded quoted rate: $EAR = e^q - 1$ [6.8]

[4.1]

CHAPTER 7

 Bond value if bond has (1) a face value of *F* paid at maturity, (2) a coupon of *C* paid per period, (3) *t* periods to maturity, and (4) a yield of *r* per period: Bond value

$$= C \times [1 - 1/(1 + r)']/r + F/(1 + r)'$$
Bond value
$$= \frac{\text{Present value}}{\text{of the coupons}} + \frac{\text{Present value}}{\text{of the face amount}}$$
[7.1]

2. The Fisher effect:

$$1 + R = (1 + r) \times (1 + h)$$

$$R = r + h + r \times h$$

$$R \approx r + h$$
[7.2]
[7.3]
[7.4]

CHAPTER 8

1. The dividend growth model:

$$P_{0} = \frac{D_{0} \times (1+g)}{R-g} = \frac{D_{1}}{R-g}$$
[8.3]

2. Required return:

$$R = D_1 / P_0 + g$$
[8.7]

CHAPTER 9

- Net present value (NPV):
 NPV = Present value of future cash flows

 Investment cost
- 2. Payback period:

Payback period = Number of years that pass before the sum of an investment's cash flows equals the cost of the investment

3. Discounted payback period:

Discounted payback period = Number of years that pass before the sum of an investment's *discounted* cash flows equals the cost of the investment

- 4. The average accounting return (AAR): $AAR = \frac{Average net income}{Average book value}$
- Internal rate of return (IRR): IRR = Discount rate of required return such that the net present value of an investment is zero
- 6. Profitability index:

Profitability index = $\frac{PV \text{ of } cash \text{ flows}}{Cost \text{ of investment}}$

CHAPTER 10

- 1. Bottom-up approach to operating cash flow (OCF): OCF = Net income + Depreciation [10.1]
- 2. Top-down approach to operating cash flow (OCF): OCF = Sales - Costs - Taxes [10.2]

3. Tax shield approach to operating cash flow (OCF):

$$OCF = (Sales - Costs) \times (1 - T)$$

$$+ Depreciation \times T$$
[10.3]

CHAPTER 11

1. Accounting break-even level: Q = (FC + D)/(P - v)[11.1] 2. Relationship between operating cash flow (OCF) and sales volume: O = (FC + OCF)/(P - v)[11.3] 3. Cash break-even level: Q = FC/(P - v)4. Financial break-even level: $Q = (FC + OCF^*)/(P - v)$ where $OCF^* = Zero NPV cash flow$ 5. Degree of operating leverage (DOL): DOL = 1 + FC/OCF[11.4]

CHAPTER 12

1. Variance of returns, Var(R) or σ^2 :

$$Var(R) = \frac{1}{T-1} [(R_1 - \overline{R})^2 + \dots + (R_T - \overline{R})^2]$$
[12.3]

2. Standard deviation of returns, SD(*R*) or σ : SD(*R*) = $\sqrt{Var(R)}$

CHAPTER 13

- 1. Risk premium:

 Risk premium = Expected return

 Risk-free rate

 [13.1]
- 2. Expected return on a portfolio: $E(R_p) = x_1 \times E(R_1) + x_2 \times E(R_2) + \cdots + x_n \times E(R_n)$ [13.2]
- 3. The reward-to-risk ratio: Reward-to-risk ratio = $\frac{E(R_i) - R_f}{\beta_i}$
- 4. The capital asset pricing model (CAPM): $E(R_i) = R_f + [E(R_M) - R_f] \times \beta_i$ [13.7]

CHAPTER 14

1. Required return on equity, R_E (dividend growth model): $R_E = D_1/P_0 + g$ [14.1]

2. Required return on equity,
$$R_E$$
 (CAPM):
 $R_E = R_f + \beta_E \times (R_M - R_f)$ [14.2]

3. Required return on preferred stock,
$$R_p$$
:
 $R_p = D/P_0$ [14.3]

- 4. The weighted average cost of capital (WACC): $WACC = (E/V) \times R_{E} + (D/V) \times R_{D}$ $\times (1 - T_{C})$ [14.6]
- 5. Weighted average flotation cost, f_A : $f_A = \frac{E}{V} \times f_E + \frac{D}{V} \times f_D$ [14.8]

CHAPTER 15

1.	Rights offerings:	
	a. Number of new shares:	
	Number of new shares	
	$= \frac{\text{Funds to be raised}}{\text{Subscription price}}$	[15.1]

- b. Number of rights needed: Number of rights needed to buy a share of stock $= \frac{\text{Old shares}}{\text{New shares}}$ [15.2]
- c. Value of a right: Value of a right = Rights-on price - Ex-rights price

CHAPTER 16

- 1. Modigliani–Miller propositions (no taxes): a. Proposition I: $V_L = V_U$
 - **b.** Proposition II:

$$R_{E} = R_{A} + (R_{A} - R_{D}) \times (D/E)$$
[16.1]

- Modigliani–Miller propositions (with taxes):
 a. Value of the interest tax shield: Present value of the interest tax shield
 - $= (T_c \times D \times R_D)/R_D$ $= T_c \times D$ [16.2]
 - **b.** Proposition I:

$$\tilde{V}_L = V_U + T_C \times D$$
 [16.3]

c. Proposition II: $\begin{aligned} R_E &= R_U + (R_U - R_D) \times (D/E) \\ &\times (1 - T_C) \end{aligned}$ [16.4]

CHAPTER 18

1.	The operating cycle:	
	Operating cycle = Inventory period + Accounts receivable period	[18.4]
2.	The cash cycle:	

CHAPTER 19

1.	Float measurement:	
	a. Average daily float:	
	Average daily float $= \frac{\text{Total float}}{\text{Total days}}$	[19.1]
	 b. Average daily float: Average daily float = Average daily receipts × Weighted average delay 	[19.2]
2.	The Baumol-Allais-Tobin (BAT) model:	
	a. Opportunity costs: Opportunity costs = $(C/2) \times R$	[19A.1]
	b. Trading costs: Trading costs = $(T/C) \times F$	[19A.2]
	c. Total cost: Total cost = Opportunity costs + Trading costs	[19A.3]
	d. The optimal initial cash balance: $C^* = \sqrt{(2T \times F)/R}$	[19A.4]
3.	The Miller–Orr model:	
	a. The optimal cash balance: $C^* = L + (3/4 \times F \times \sigma^2/R)^{1/3}$	[19A.5]
	b. The upper limit: $U^* = 3 \times C^* - 2 \times L$	[19A.6]

CHAPTER 20

1.	The size of receivables:	
	Accounts receivable	
	= Average daily sales \times ACP	[20.1]
2.	NPV of switching credit terms:	
	a. Present value of switching: PV = [(P - v)(Q' - Q)]/R	[20.4]
	b. Cost of switching: Cost of switching = $PQ + v(Q' - Q)$	[20.5]
	c. NPV of switching: NPV of switching = $-[PQ + v(Q' - Q)]$ + [(P - v)] $\times (Q' - Q)]/R$	[20.6]
3.	NPV of granting credit:	
	a. With no repeat business: NPV = $-v + (1 - \pi)P/(1 + R)$	[20.8]

b. With repeat business: NPV = $-v + (1 - \pi)(P - v)/R$ [20.9]

4.	The economic order quantity (EOQ) model:	
	a. Total carrying costs: Total carrying costs = Average inventory \times Carrying costs per unit = $(Q/2) \times CC$	[20.10]
	b. Total restocking costs: Total restocking costs = Fixed cost per order \times Number of orders = $F \times (T/Q)$	[20.11]
	c. Total costs: Total costs = Carrying costs + Restocking costs = $(Q/2) \times CC$ + $F \times (T/Q)$	[20.12]
	d. The optimal order size Q^* : $Q^* = \sqrt{\frac{2T \times F}{CC}}$	[20.15]

CHAPTER 21			
Purchasing power parity (PPP): $E(S_{i}) = S_{0} \times [1 + (h_{FC} - h_{US})]^{t}$	[21.3]		
Interest rate parity (IRP):			
a. Exact, single period: $F_1/S_0 = (1 + R_{FC})/(1 + R_{US})$	[21.4]		
b. Approximate, multiperiod: $F_t = S_0 \times [1 + (R_{FC} - R_{US})]^t$	[21.7]		
Uncovered interest parity (UIP): $E(S_{t}) = S_{0} \times [1 + (R_{FC} - R_{US})]^{t}$	[21.9]		
International Fisher effect (IFE): $R_{US} - h_{US} = R_{FC} - h_{FC}$	[21.10]		
	HAPTER 21 Purchasing power parity (PPP): $E(S_i) = S_0 \times [1 + (h_{FC} - h_{US})]^i$ Interest rate parity (IRP): a. Exact, single period: $F_1/S_0 = (1 + R_{FC})/(1 + R_{US})$ b. Approximate, multiperiod: $F_i = S_0 \times [1 + (R_{FC} - R_{US})]^i$ Uncovered interest parity (UIP): $E(S_i) = S_0 \times [1 + (R_{FC} - R_{US})]^i$ International Fisher effect (IFE): $R_{US} - h_{US} = R_{FC} - h_{FC}$		