VISUAL SUMMARY ## *t* Tests Between Two Independent Sample Means **Before You Begin:** State H_0 and H_1 . Compute $$\overline{X}_1$$, S_1 , n_1 , \overline{X}_2 , S_2 , n_2 . Estimate the standard error of the means X_1 Estimated $$\sigma_{\bar{X}_1} = \frac{S_1}{\sqrt{n_1}}$$ Estimated $\sigma_{\bar{\chi}_2} = \frac{S_2}{\sqrt{n_2}}$ Estimate the standard error of the difference between means: estimated $$\sigma_{diff} = \sqrt{(\text{estimated } \sigma_{\bar{X}_1})^2 + (\text{estimated } \sigma_{\bar{X}_2})}$$ Compute *t*: $$t = \frac{\bar{X}_1 - \bar{X}_2}{\text{estimated } \sigma_{\text{diff}}}$$ Compute the degrees of freedom: $$df = (n_1 - 1) + (n_2 - 1)$$ Find the critical value in Table T If |t| >critical value, reject H_0