VISUAL SUMMARY

t Tests Between Two Independent Sample Means

Before You Begin: State H_0 and H_1 .

Compute
$$\overline{X}_1$$
, S_1 , n_1 , \overline{X}_2 , S_2 , n_2 .

Estimate the standard error of the means X_1

Estimated
$$\sigma_{\bar{X}_1} = \frac{S_1}{\sqrt{n_1}}$$

Estimated $\sigma_{\bar{\chi}_2} = \frac{S_2}{\sqrt{n_2}}$

Estimate the standard error of the difference between means:

estimated
$$\sigma_{diff} = \sqrt{(\text{estimated } \sigma_{\bar{X}_1})^2 + (\text{estimated } \sigma_{\bar{X}_2})}$$

Compute *t*:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\text{estimated } \sigma_{\text{diff}}}$$

Compute the degrees of freedom:

$$df = (n_1 - 1) + (n_2 - 1)$$

Find the critical value in Table T

If |t| >critical value, reject H_0