VISUAL SUMMARY

t Tests for Correlated Samples

Before You Begin: State H_0 and H_1 .

Compute \overline{X}_1 , S_1 , n_1 , \overline{X}_2 , S_2 , n_2 , and covariance or r. Or compute \overline{D} , Σ D^2 , n.

Estimate the standard error of the difference between means:

Correlation

Difference

estimated
$$\sigma_{difference}$$
 = $\sqrt{(\text{estimated }\sigma_{\overline{X_1}})^2 + (\text{estimated }\sigma_{\overline{X_2}})^2 - (2 \cdot \text{cov})}$
or

 $\sigma_{\textit{difference}} = \sqrt{(\text{estimated } \sigma_{\overline{X}_1})^2 + (\text{estimated } \sigma_{\overline{X}_2})^2 - (2 \cdot \text{r} \cdot \text{estimated } \sigma_{\overline{X}_1} \cdot \text{estimated } \sigma_{\overline{X}_2})}$

Estimated
$$\sigma_{difference} = \sqrt{\frac{\sum D^2}{n} - D^2}$$

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\text{estimated } \sigma_{difference}}$$

$$t = \frac{\overline{D}}{\text{estimated } \sigma_{difference}}$$

Compute the degrees of freedom:

$$df = (n-1)$$

Find the critical value in Table T

If |t| >critical value, reject H_0