Practice Problem Solutions

$$
\begin{aligned}
& \text { 1. } \mathrm{b}=r_{x y} \cdot \frac{S_{X}}{S_{Y}}=.62 \cdot \frac{1.00}{2.41}=.257 \quad a=\bar{X}-(b \cdot \bar{Y})=5.5-(.257 \cdot 8.5)=3.315 \\
& \hat{X}=b Y+a=.257(6.6)+3.315=5.011 \text { hours sleep } \\
& S_{X Y}=S_{X} \cdot \sqrt{1-r^{2}}=1.00 \cdot \sqrt{1-.62^{2}}=1.00 \cdot \sqrt{1-.384}=.785
\end{aligned}
$$

$5.011 \pm .785$ hours sleep predicted for someone recalling 6.6 words.
2. $\hat{X}=b Y+a=.257(8.0)+3.315=5.371$

$$
S_{X Y}=S_{X} \cdot \sqrt{1-r^{2}}=1.00 \cdot \sqrt{1-.62^{2}}=1.00 \cdot \sqrt{1-.384}=.785
$$

$5.371 \pm .785$ hours sleep predicted for someone recalling 8.0 words.
3. $\hat{X}=b Y+a=.257(4.2)+3.315=4.394$

$$
S_{X Y}=S_{X} \cdot \sqrt{1-r^{2}}=1.00 \cdot \sqrt{1-.62^{2}}=1.00 \cdot \sqrt{1-.384}=.785
$$

$4.394 \pm .785$ hours sleep predicted for someone recalling 4.2 words.
4. $\mathrm{b}=r_{x y} \cdot \frac{S_{Y}}{S_{X}}=.62 \cdot \frac{2.41}{1.00}=1.494 \quad a=\bar{Y}-(b \cdot \bar{X})=8.5-(1.494 \cdot 5.5)=.283$
$\hat{Y}=b X+a=1.494(6)+.283=9.247$ words recalled
$S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=2.41 \cdot \sqrt{1-.62^{2}}=2.41 \cdot \sqrt{1-.384}=1.892$
9.247 ± 1.892 recalled words predicted for someone sleeping 6 hours on weeknights.
5. $\hat{Y}=b X+a=1.494(8)+.283=11.952$ words recalled

$$
S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=2.41 \cdot \sqrt{1-.62^{2}}=2.41 \cdot \sqrt{1-.384}=1.892
$$

11.952 ± 1.892 recalled words predicted for someone sleeping 8 hours on weeknights.
6. $\hat{Y}=b X+a=1.494(4)+.283=5.976$ words recalled
$S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=2.41 \cdot \sqrt{1-.62^{2}}=2.41 \cdot \sqrt{1-.384}=1.892$
5.976 ± 1.892 recalled words predicted for someone sleeping 4 hours on weeknights.
7. $\mathrm{b}=r_{x y} \cdot \frac{S_{Y}}{S_{X}}=.64 \cdot \frac{12}{9}=.853 \quad a=\bar{Y}-(b \cdot \bar{X})=63.3-(.853 \cdot 39.8)=29.351$

The regression equation for predicting the life satisfaction score from age is:

$$
\hat{Y}=b X+a=.853(X)+29.351
$$

8. $\hat{Y}=b X+a=.853(50)+29.351=42.65+29.351=72.00$

$$
S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=12 \cdot \sqrt{1-.64^{2}}=12 \cdot \sqrt{1-.410}=9.216
$$

72.00 ± 9.216 points is the predicted life satisfaction score for someone 50 years of age.
9. $\hat{Y}=b X+a=.853(30)+29.351=25.59+29.351=54.941$

$$
S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=12 \cdot \sqrt{1-.64^{2}}=12 \cdot \sqrt{1-.410}=9.216
$$

54.941 ± 9.216 points is the predicted life satisfaction score for someone 30 years of age.
10. $\hat{Y}=b X+a=.853(60)+29.351=51.18+29.351=80.531$

$$
S_{Y X}=S_{Y} \cdot \sqrt{1-r^{2}}=12 \cdot \sqrt{1-.64^{2}}=12 \cdot \sqrt{1-.410}=9.216
$$

80.531 ± 9.216 points is the predicted life satisfaction score for someone 60 years of age.

