
CHAPTER 5

Introduction to Modern
Symmetric-Key Ciphers

(Solution to Odd-Numbered Problems) 
Review Questions

1. The traditional symmetric-key ciphers are character-oriented ciphers. The modern
symmetric-key ciphers are bit-oriented ciphers.

3. A transposition is definitely a permutation of bits. A substitution of bits can be
thought of a permutation if we add decoding and encoding to the operation.

5. A P-box (permutation box) transposes bits. We have three types of P-boxes in
modern block ciphers: straight P-boxes, expansion P-boxes, and compression P-
boxes. A straight P-box is invertible; the other two are not. 

7. A product cipher is a complex cipher combining substitution, permutation, and
other components discussed in this chapter. We discussed two classes of product
ciphers: Feistel and non-Feistel ciphers.

9. A Feistel block cipher uses both invertible and noninvertible components. A non-
Feistel block cipher uses only invertible components. 

11. In a synchronous stream cipher the key stream is independent of the plaintext or
ciphertext. In a nonsynchronous stream cipher the key stream is somehow depen-
dent on the plaintext or ciphertext. 

Exercises

13. The order of the group is 10! = 3,626,800. The key size is ⎡log2(10!)⎤ = 22 bits.
Note that a key of 22 bits can select 222 = 4,194,304 different permutations, but
only 3,626,800 of them are used here. 

15.

a. CircularLeftShift3(10011011)  → 11011100

b. CircularRightShift3(11011100)   → 10011011   
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c. The original word in Part a and the result of Part b are the same, which shows
that circular left shift and circular right shift operations are inverses of each
other. 

17. We show the complement of A with A .

a. (01001101) ⊕ (01001101) = (00000000)   →    (A ⊕ A = All 0s) 

b. (01001101) ⊕ (10110010) = (11111111)    →   (A ⊕ A = All 1s) 

c. (01001101) ⊕ (00000000) = (01001101)    →   (A ⊕  All 0s = A)

d. (01001101) ⊕ (11111111) = (10110010)    →   (A ⊕  All 1s = A)

19. Using eight bits for each character, |M| = 8 × 2000 = 16,000 bits. Therefore, we
have 

This means no padding is needed. The message is divided into 250 blocks. 

21. The permutation table is [1  3  5]. 

23. See the figure below:

25. It is a compression P-box with 7 inputs and 5 outputs as shown below:

27. We use the following procedure:

a. We first find the input/output relation based on the given S-box: 

|M| + |Pad| = 0 mod 64 →  |Pad| = − |M| mod 64  →  |Pad| = − 16,000 mod 64 = 0 

Input: 00 01 10 11 

Output: 01 11 10 00 

Straight
P-box

1 2 4  53 6 7 8

1 2 4  53 6 7 8

Compression
P-box

1 2 4  53 6 7

1 2 4  53
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b. We then find the inverse input/output relation (sorted on input): 

c. Now we create the table for the inverse S-box (the left row defines the first
input bit, the first column defines the second input bit, and the entries define the
output):

 

29. The characteristic polynomial is x4 + x3 + x2  + 1 or (11101)2 or (1D)16. The poly-
nomial is not primitive (see Appendix G). The maximum period is then less than
24 − 1 or less than 15. 

31. To have a maximum period of 32, the characteristic polynomial should be of
degree 6 because 25 − 1 = 31 < 32. However, if the characteristic polynomial is
primitive, the maximum period is 26 − 1 = 63. But the problem says that the maxi-
mum period is 32, therefore, the characteristic polynomial is not primitive. In other
words, we have an LFSR of degree 6, with 6 cells (6-bit register) whose character-
istic polynomial is not primitive.

33.   

35.

37.

Input: 00 01 10 11 

Output: 11 00 10 01 

0 1

0 11 00

1 10 01

Input: 1011 →  Left rotate → Output: 110

Input: 0110 →  Right rotate → Output: 011

combine (rightWord [1 … m], leftWord [1 … m], m)

{
i ← 1

while (i ≤ m)

{

 word[i] ← rigthWord[i] 

 word[i + m] ← leftWord[i] 

  i ← i + 1

} 

 return (word[1 … n]) // n = 2m

}
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39. The table can be designed in many different ways. We assume, we have a linear
table of n cells, in which each cell contains a value of m bits. The input defines the
cell number, the contents of the cell defines the output. With this configuration, the
routine looks like the one shown below: 

circularShift (shift, word [1 … n], n, k)

{
i ← 1

while (i ≤ k)

{

 if (shift = left) 

 word ← circularShiftLeft(word, n)
 else 

  word ← circularShiftRight(word, n)
 i ← i + 1   

} 

return (word[1 … n]) 

}
circularShiftLeft (word [1 … n], n)

{
 temp ← word[n]

j ← n − 1

 while (j ≥ 0) 

 {

 word[j +1] ← word[j]

j ← j − 1

  }

word[1] ← temp   

return (word[0 … n]) 

}
circularShiftRight (word [0 … n], n)

{
 temp ← word[1]

j ← 1

 while (j ≤ n) 

 {

 word [j −1] ← word[j]

j ← j + 1

  }

word[n] ← temp   

return (word[0 … n]) 

}
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41.  

S-box (inputBits [1 … n], Table [1 … n], n, m)

{
index ← binaryToDecimal (inputBits)

value ← Table [index]

outputBits ← decimalToBinary (value)

return (outputBits [0 … m]) 

}

FeistelRound (inputBits [1 … n], roundKey[1 … n], n)

{
(tempLeft , tempRight) ← split (word, n) 
tempLeft ← tempLeft ⊕ function (tempRight, roundKey) 
(tempLeft , tempRight) ← swap (tempLeft , tempRight)
outputBits ← combine(tempLeft, tempRight)
return (outputBits [1 … n]) 

}
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