
CHAPTER 7

AES
(Solution to Odd-Numbered Problems) 
Review Questions

1. The criteria defined by NIST for selecting AES fall into three areas: security, cost,
and implementation.

3. The number of round keys and the number of transformation depend on the num-
ber of rounds. The following table list the information. Note that there is one trans-
formation for pre-round. Also note that the last round uses only three
transformations. 

5. Before and after each stage, the data block is referred to as a state. States, like
blocks, are made of 16 bytes, but they are normally treated as matrices of 4 × 4
bytes. The following table shows the number of states used in each version. We
have used two extra states: one before the pre-round and one after the last round. If
you do not consider this, the number of states is reduced by two. 

7. Substitution in DES is done by S-boxes. Each box substitutes a 6-bit value with a
4-bit value. We need eight S-boxes to create a 32-bit half block. Substitution in

Version Number of 
rounds

Number of
round keys

Number of
Transformations

AES-128 10 11 1 + 9 × 4 + 3 = 40

AES-192 12 13 1 + 11 × 4 + 3 = 48

AES-256 14 15 1 + 13 × 4 + 3 = 56

Version Number of 
rounds

Number of
States

AES-128 10 (1) + 1 + 9 × 4 + 3 + (1) = 42

AES-192 12 (1) + 1 + 11 × 4 + 3 + (1) = 50

AES-256 14 (1) + 1 + 13 × 4 + 3 + (1) = 58
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AES is done through SubBytes transformation that transforms a whole state to
another state. However, we can say that SubBytes actually substitutes 16 bytes
with new 16 bytes. 

9. In DES, the size of the block is 64 bits, but the size of the round key is 48 bits. In
AES the size of the block and the round key are both 128 bits (for all versions). 

Exercises
11. The disadvantage of using keyed S-boxes is that it makes the design of the cipher

more difficult. In particular, it is more difficult to create S-boxes that are inverse of
each other in the encryption and decryption cipher. The advantage of using keyed
S-boxes is that a keyed S-box is normally non-linear, which protect the cipher
against linear cryptanalysis.

13. Having different number of rounds has the advantage that new versions of cipher
with more number of rounds can be used, without changing the structure of cipher,
if the cipher is attacked by differential and linear cryptanalysis (or other attacks
that depend on the number of rounds). For example, we can use AES with 10
rounds as long as it is not secured. If it is attacked, we can move to the version with
12 or 14 rounds without changing the structure of the cipher. 

15. A cipher in which the size of the round is the same as the size of the round key is
easier to design because we do not have to use expansion (or compression) permu-
tation to match the size of the block to the size of the round key. This enable us to
make the non-Feistel ciphers. 

17. We use two plaintexts that differ only in the first bit:

a. Applying the SubBytes transformation to P1 and P2, we get:

T2 and T1 differ only in 5 bits.    

b. Applying the ShiftRows transformation to P1 and P2, we get:

T2 and T1 differ only in 1 bit. 

P1: (0000 0000 0000 0000 0000 0000 0000 0000)16

P2: (8000 0000 0000 0000 0000 0000 0000 0000)16

T1: (6363 6363 6363 6363 6363 6363 6363 6363)16

T2: (CD63 6363 6363 6363 6363 6363 6363 6363)16

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (8000 0000 0000 0000 0000 0000 0000 0000)16
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Applying the MixColumn transformation to P1 and P2, we get:

T2 and T1 differ in 9 bits. 

c. Applying the AddRoundKey of 128 0-bit transformation to P1 and P2, we get:

T2 and T1 differ only in 1 bit. Note that we have used a round key with 128 0’s,
but the result is the same if we use any key. 

19.

a. The SubBytes transformation is repeated in each round. So we have Nr of this
transformation. 

b. The ShiftRows transformation is repeated in each round. So we have Nr of this
transformation.

c. The MixColumns transformation is repeated in each round except the last
round. So we have (Nr  − 1) of this transformation.

d. The AddRoundKey transformation is repeated in each round. In addition, we
have one of this transformation in the pre-round section. So we have (Nr  + 1) of
this transformation. 

e. The total number of transformation is 

21.

a. We can use (x11−1 mod prime) and (x12−1 mod prime), in which the prime is the
the irreducible polynomial (x8 + x4 + x3 + x + 1), to find the first terms of
RCon[11] and RCon[12]. The following shows the constants for AES-192. 

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (1B80 809B 0000 0000 0000 0000 0000 0000)16

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (8000 0000 0000 0000 0000 0000 0000 0000)16

Total number of transformation =  Nr  + Nr   +   (Nr  − 1) +   (Nr  + 1) = 4 × Nr

Round (RCon) Round (RCon) Round  (RCon)

1 (01 00 00 00)16 5 (10 00 00 00)16 9 (1B 00 00 00)16

2 (02 00 00 00)16 6 (20 00 00 00)16 10 (36 00 00 00)16

3 (04 00 00 00)16 7 (40 00 00 00)16 11 (6C 00 00 00)16

4 (08 00 00 00)16 8 (80 00 00 00)16 12 (D8 00 00 00)16



4

b. We can use (x13−1 mod prime) and (x14−1 mod prime), in which the prime is the
the irreducible polynomial (x8 + x4 + x3 + x + 1), to find the first terms of
RCon[13] and RCon[14]. The following shows the constants for AES-256. 

23. The result is an identity matrix as shown below. Note that the addition and multi-
plication of elements are in GF(2). 

25. Most of the code matches, line by line, with the steps in the process. The only sec-
tion that needs some explanation is the loop. The iterations of the loop gives us

The rearranged code is the result of matrix multiplication c = X × b if we ignore
the zero terms. After each line is created d = c + y is made. 

Round  (RCon) Round  (RCon) Round  (RCon)

1 (01 00 00 00)16 6 (20 00 00 00)16 11 (6C 00 00 00)16

2 (02 00 00 00)16 7 (40 00 00 00)16 12 (D8 00 00 00)16

3 (04 00 00 00)16 8 (80 00 00 00)16 13 (AB 00 00 00)16

4 (08 00 00 00)16 9 (1B 00 00 00)16 14 (4D 00 00 00)16

5 (10 00 00 00)16 10 (36 00 00 00)16

c0 = b0 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7 → c0  = b0 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7

c1 = b1 ⊕ b5 ⊕ b6 ⊕ b7 ⊕ b0 → c1  = b0 ⊕ b1⊕ b5 ⊕ b6 ⊕ b7

c2  = b2 ⊕ b6 ⊕ b7 ⊕ b0 ⊕ b1 → c2 = b0 ⊕ b1 ⊕ b2 ⊕ b6 ⊕ b7

c3  = b3 ⊕ b7 ⊕ b0 ⊕ b1 ⊕ b2 → c3 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b7

c4  = b4 ⊕ b0 ⊕ b1⊕ b2 ⊕ b3 → c4 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4

c5  = b5 ⊕ b1⊕ b2 ⊕ b3 ⊕ b4 → c5 = b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5

c6  = b6 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 → c6  = b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6

c7  = b7  ⊕ b3 ⊕ b4 ⊕ b5⊕ b6 → c7 = b3 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7
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27.

29.

31. The MixColumns algorithm calls the mixcolum routine four times, once for each
column of the old state to create the correspond column of the new state. The mix-
column routine actually performs the following matrix multiplication col = C × t,
in which col is the new column matrix, t is the old column matrix, and the C is the
square constant matrix. We can write the code in the mixcolumn routine as 

InvSubBytes (S[0 … 3][0 … 3])

{

for (r = 0 to 3)

for (c = 0 to 3)

 S[r][c] ← invsubbyte (S[r][c]) 

return (S) 

}

invsubbyte (byte)

{

d ← ByteToMatrix (byte)

c ← d ⊕ ByteToMatrix (0x63)

b ← X−1 ×  c

a ← MatrixToByte (b)

return (a−1) 

}

CopyRow (row[0 … 3], t[0 … 3])

{

for (c = 0 to 3)

t[c] ← row [c] 

}

col0 ← C00 •  t0 ⊕ C01 •  t1 ⊕ C02 •  t2 ⊕ C03 •  t3 

col1 ← C10 •  t0 ⊕ C11 •  t1 ⊕ C12 •  t2 ⊕ C13 •  t3 

col2 ← C20 •  t0 ⊕ C21 •  t1 ⊕ C22 •  t2 ⊕ C23 •  t3 

col3 ← C30 •  t0 ⊕ C31 •  t1 ⊕ C32 •  t2 ⊕ C33 •  t3 
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33.

35. The algorithm uses a loop that iterates four times, one for each column of the cur-
rent state. In each iteration, a column of the old state is exclusive-ored with a key
word to create a new column. 

S[c] ← S[c] ⊕ W[4 × round + c]

For example, in round 5, we have

37.

a.

MixColumns (S[0 … 3][0 … 3]

{

for (c = 0 to 3)

mixcolumn (S[c])

}

mixcolumn (col [0 … 3])

{

CopyColumn (col, t)

col[0] ← MultField (0x02, t[0]) ⊕ MultField (0x03, t[1]) ⊕ t[2] ⊕ t[3]     

col[1] ← t[0] ⊕ MultField (0x02, t[1]) ⊕ MultField (0x03, t[2]) ⊕ t[3]     

col[2] ← t[0] ⊕ t[1] ⊕ MultField (0x02, t[2]) ⊕ MultField (0x03, t[3])      

col[3] ← MultField (0x03, t[0]) ⊕ t[1] ⊕ t[2] ⊕ MultField (0x02, t[3])      

}

S[0] ← S[0] ⊕ W[20]

S[1] ← S[1] ⊕ W[21]

S[2] ← S[2] ⊕ W[22]

S[3] ← S[3] ⊕ W[23]

KeyExpansion (Key[0 … 23], W[0 … 51]

{

for (i = 0 to 5)

W[i] ← Key [4i] |  Key[4i +1] |  Key[4i +2] | Key[4i +3]   

for (i = 6 to 51)

if (i mod 6 = 0)   

{   

   t ← subword(rotWord (W[i − 1]) ⊕ Rcon[i /6] 

   W[i] ← t ⊕ W[i − 6] 
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b.

39.

}   

else   

   W[i] ← W[i − 1] ⊕ W[i − 6] 

}

KeyExpansion (Key[0 … 31], W[0 … 59])

{

for (i = 0 to 7)

W[i] ← Key [4i] |  Key[4i +1] |  Key[4i +2] | Key[4i +3]   

for (i = 8 to 59)

if (i mod 8 = 0)   

{   

   t ← subword(rotWord (W[i − 1]) ⊕ Rcon[i /8] 

   W[i] ← t ⊕ W[i − 8] 

}   

if (i mod 8 = 4)   

{   

   t ← subword(W[i − 1]) 

   W[i] ← t ⊕ W[i − 8] 

}   

else   

   W[i] ← W[i − 1] ⊕ W[i − 8] 

}

InvCipher (InBlock[0 … 16], outBlock[0 … 16], W[0 … 43]

{

BlockToState (Inblock, S)

S ← AddRoundKey (S, W[40 … 43])

 for (r = 1 to 10) // r defines the round

{ 

S ← InvShiftRows (S) 

S ← InvSubBytes (S) 

S ← AddRoundKey (S, W[(10 − r) × 4 … (10 − r) × 4 + 3) 

if (r ≠ 10) 

 S ← InvMixColumns (S)

}
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StateToBlock (S, outBlock)

}
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	MixColumns (S[0 º 3][0 º 3]
	{
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	}
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	{
	}
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	a.


	KeyExpansion (Key[0 º 23], W[0 º 51]
	{
	W [i] ¨ Key [4i] | Key [4i +1] | Key [4i +2] | Key [4i +3]
	if (i mod 6 = 0)
	{
	t ¨ subword(rotWord (W [i - 1]) Å Rcon [i /6]
	W [i] ¨ t Å W [i - 6]
	}
	else
	W [i] ¨ W [i - 1] Å W [i - 6]
	}
	b.

	KeyExpansion (Key[0 º 31], W[0 º 59])
	{
	W [i] ¨ Key [4i] | Key [4i +1] | Key [4i +2] | Key [4i +3]
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	else
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	39.

	InvCipher (InBlock[0 º 16], outBlock[0 º 16], W[0 º 43]
	{
	// r defines the round
	S ¨ InvShiftRows (S)
	S ¨ InvSubBytes (S)
	S ¨ AddRoundKey (S, W[(10 - r) ¥ 4 º (10 - r) ¥ 4 + 3)
	if (r ¹ 10)
	S ¨ InvMixColumns (S)
	}



