
10

535

The Design of a
Central Processing
Unit

In this chapter, we will discuss the design of the controller for parts of
a computer, called MODEL. MODEL has a word size of 32 bits.
Instructions may require one or two words, depending on the

addressing mode.
The format for the first word of a MODEL instruction is shown in

Figure 10.1, where RN specifies the register number and AM specifies
the address mode.

*This implies a 32-bit address and a maximum memory of 232 words. Not all of the
memory needs to be there for the system to work properly.

0 5 6 11 12 15 16 31

Op-Code RN AM Address

Figure 10.1 Instruction format for MODEL.

10.1 DESCRIPTION OF MODEL
In this section, we will specify the addressing modes and the instructions
for which we will show the control sequence and discuss the timing.
MODEL would surely have a wider variety of instructions and more
addressing modes. However, those that we specify will be adequate to
demonstrate the process of design.

10.1.1 Memory and Register Set

MODEL has a memory space of 232 words,* each 32 bits wide. To access
memory, the address is placed on lines AD[0:31] for one clock period.
For read, a 1 is placed on line read at that same time, and the contents

FIRST PAGES

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 535

of that memory location will be available on bus DATA[0:31] during
that clock period. Thus, a typical memory fetch step might be

AD � PC; read � 1; IR ← DATA.

To store in memory, the word is connected to DATA (at the same time as
the address is on AD) and a 1 is put on line write, for example

AD � PC; DATA � WORK; write � 1.

We will examine the modifications needed to handle a slower memory in
Section 10.4.

DATA is an INTERSYSTEM BUS. ADIN, read, and write could
be thought of as OUTPUT LINES from MODEL or as an INTERSYS-
TEM BUS. We will treat them as the latter; they are part of BUS, as
shown in Figure 8.1.

The register set of MODEL includes the following registers:

PC[0:31] The program counter
IR[0:31]§ The instruction register—a place to store

the first word of an instruction while it is
being decoded and executed

REG[0:63; 0:31]* A set of 64 general-purpose registers
WORK[0:31]§ A register to hold data temporarily
EA[0:31]§ Register in which the effective address

is computed
z Zero flag bit—set to 1 when the result of

some instructions is zero† (0 otherwise)
n Negative flag bit—set to 1 when the

result of some instructions is negative
(leading bit is 1)

c Carry (and borrow) bit—stores the carry
out of the most significant bit of the
adder

v Two’s complement overflow bit—set to
1 if the result of an operation is out of
range, assuming operands are in two’s
complement notation (0 otherwise)

Registers indicated with a § contain no useful information between
instructions. If we expand the instruction set, we may need to add some
registers.

536 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*REG3F will be used as the stack pointer; we will use the notation SP in the DDL, but
will define it as REG3F with a NAME definition line.
†When we describe the instructions in Section 10.1.2, we will specify which instructions
modify which flag bits.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 536

10.1 Description of Model 537

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

PUSH

Stack empty

7FFFFFFF

SP

PUSH

7FFFFFFE

12345678

SP

POP

7FFFFFFD

12345678
10101010

12345678

10101010

12345678 12345678

10101010

SP

7FFFFFFE

12345678

SP

Figure 10.2 Operation of the stack pointer.

The stack in MODEL is stored in memory. The register SP points to
the next empty place on the stack. Elements are stored in descending
order on the stack. Thus, if the stack pointer contains 7FFFFFFF and
something is pushed onto the stack, it is stored in location 7FFFFFFF and
the stack pointer is then decremented to 7FFFFFFE. Figure 10.2 shows
the behavior of the stack with two items being pushed onto the stack and
then one popped from the stack. Note that the SP is decremented on
pushes and incremented on pops. When something is popped, it is not
erased; it is copied to the Central Processing Unit (CPU) and the pointer
is incremented. After the pop, the contents of 7FFFFFFE are still there but
will never be used by a stack instruction. A push would write over it; a
pop would first increment SP and take the contents of 7FFFFFFF.

Internally, data is transferred by way of a 32-bit internal bus,
CPUBUS. In addition, the arithmetic and logic unit has two 32-bit input
buses: INA and INB. In describing the behavior of the machine, these
buses are not referenced most of the time. A statement

REG/IR6:11 ← WORK.

implies that WORK is connected to CPUBUS and the data on that bus is
clocked into the register, that is,

CPUBUS � WORK; REG/IR6:11 ← CPUBUS.

WORK ← ADD1:32[FFFFFFFF; WORK; 0]

implies the constant FFFFFFFF is connected to one 32-bit input of the
adder, WORK is connected to the other 32-bit input, 0 is connected to the

EXAMPLE 10.1

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 537

cin input, the right 32 bits of the adder output is connected to CPUBUS,
and the bus is clocked into WORK. In this example, the carry output of the
adder is not stored anywhere,

INA � FFFFFFFF; INB � WORK; cin � 0;
BUS � ADD1:32[INA; INB; cin]; WORK ← CPUBUS

If we wanted to store that in the c flip flop, we would have written

c, WORK ← ADD[FFFFFFFF; WORK; 0]

538 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

Since there is no other way to move data, it is not necessary to be more
specific.

Figure 10.3 shows a simplified block diagram of the bus structure.
The constants, partial register connections, and shifted WORK are not
shown, (For example, WORK ← FFFF, IR16:31 implies the constant
FFFF is connected to the left half of CPUBUS and only the right half of
IR is connected to the right half of CPUBUS.)

In addition to the three internal busses, there are two intersystem
busses: DATA and AD. (The bus signals read and write are not
shown.) Note that INA, INB, AD, read and write are really only
multiplexors, with data only going in one direction. (However, in a larger

STATUS

INA INB AD

ALU

WORK IR REG0

REG63

PC SP EA

DATACPUBUS

Figure 10.3 MODEL bus diagram.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 538

system where memory is used by more than one subsystem, AD, read,
and write may be buses.)

10.1.2 Addressing Modes

We will define 7 addressing modes (of the 16 possibilities with 4 bits),
treating the remaining 9 as no-ops (no operation). Some of the Exam-
ples, Solved Problems, and Exercises will suggest others. In each of the
following examples, we will show what happens for a load register
instruction (LOD), where RN is assumed to be 5 (05). The first four
modes require a one-word instruction; the others require a second word.
The AM field is shown in binary, rather than hexadecimal, to simplify
the discussion later.

Register (AM � 0000) The data comes from or is stored in the one
of the 64 registers specified by IR26:31.* This mode is not valid for
branch instructions, since they require a memory address.

Example: LOD REG5, REG14 [IR26:31 � OE]
The data in Register 14 is loaded into Register 5.

Register indirect (AM � 0010) The register specified by IR26:31

contains the address in main memory of the data or where the result is to
be stored or the jump is to go.

Example: LOD REG5, (REG14) [IR26:31 � OE]
where REG14: 12345678
The data in memory location 12345678 is loaded into Register 5.

Page zero (AM � 0110) Bits IR16:31 are zero-extended to produce
the effective address.

Example: LOD REG5, z1234 [IR16:31 � 1234]
The data in memory location 00001234 is loaded into Register 5.

Relative (AM � 0111) Bits IR16:31 are sign-extended and added to
the program counter (after the program counter has been incremented to
point to the next instruction) to produce the effective address.

Example: LOD REG5, @1234 [IR16:31 � 1234]
If this instruction is at address 01120111, the effective address is

00001234 � 01120111 � 1 � 01121346.

The data in memory location 01121346 is loaded into Register 5.

10.1 Description of Model 539

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*In those modes where the address field specifies a register, IR16:25 (the rest of the
address field) are ignored.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 539

Example: LOD REG5, @8000 [IR16:31 � 8000]
If this instruction is at address 01120111, the effective address is

FFFF8000 � 01120111 � 1 � 01118112.

The data in memory location 01118112 is loaded into Register 5.

Direct (AM � 1000) [IR16:31 are ignored] A second word of the
instruction is required. That word contains the effective address.

Example: LOD REG5, 12345678
The contents of memory location 12345678 is loaded into Register 5.

Indirect (AM � 1001) [IR16:31 are ignored] A second word of
the instruction is required. It contains the address in memory where the
effective address of data is found.

Example: LOD REG5, (12345678)

M[12345678] � 56789ABC

The contents of 12345678 are fetched. Then the contents of memory
location 56789ABC are loaded into Register 5.

Immediate (AM � 1100) [IR16:31 are ignored] A second word of
the instruction is required. It contains the data. This type is not valid for
any instruction that requires an address (for storing a result or branching).

Example: LOD REG5, #12345678
The number 12345678 is loaded into Register 5. (The constant 12345678 is
contained in the second word of the instruction.)

540 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.2 We have an instruction to ADD the number specified by the addressing to
REG4, where

This instruction is at location 12341234
The second word of the instruction (if any) is 20000000
Bits 16 to 31 of this instruction word are AB07
REG4 � 00000102
REG7 � 00123344
M[0000AB07] � 11111111
M[00123344] � FFFFFFFE
M[1233BD3C] � 44332211

M[20000000] � 00123344

We will examine which registers (not including the flag bits) are changed for
each addressing type.

Register REG4 ← 00123446 (00000102 � 00123344)
PC ← 12341235

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 540

Register indirect REG4 ← 00000100 (00000102 � FFFFFFFE)
PC ← 12341235

Page zero REG4 ← 11111213 (00000102 � 11111111)
PC ← 12341235

Relative Address � 12341234 � 1 � FFFFAB07 �

1233BD3C
REG4 ← 44332313 (00000102 � 44332211)
PC ← 12341235

Direct REG4 ← 00123446 (00000102 � 00123344)
PC ← 12341236

Indirect REG4 ← 00000100 (00000102 � FFFFFFFE)
PC ← 12341236

Immediate REG4 ← 20000102 (00000102 � 20000000)

PC ← 12341236

10.1 Description of Model 541

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*We will use REG63 for the stack pointer and thus will not need special instructions to
load or store SP.
†Either the contents of the memory location specified by EA, or the data for immediate or
register addressing.

10.1.3 Instruction Set of MODEL

In this section, we will define a subset of the instructions, enough to
illustrate the design of the controller. For each, we will specify a three-
letter mnemonic and the flag bits that are affected. We will not assign an
op-code; rather, we will implement the controller, assuming that an
appropriate decoder is included. However, those instructions that do not
use the address portion (for example, Return from subroutine) begin with
a 1; others begin with a 0. For each of the examples, we will assume that
we used direct addressing and that

The effective address is 12345678
M[12345678] � 10101234
REG3 � FFFFFFF8
SP � 7FFFFFF6
M[7FFFFFF7] � 98765432

Data Movement*

LOD z n Load register with data specified by the address field†

Example: LOD REG3, 12345678

REG3 ← 10101234 z ← 0 n ← 0

STO Store register in location specified by the address
field (either memory or a register)

[SP 1, 2; EX 1]

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 541

Example: STO REG3, 12345678

M[12345678] ← FFFFFFF8

PSH Push register onto the stack

Example: PSH REG3

M[7FFFFFF6] ← FFFFFFF8 SP ← 7FFFFFF5

PSH and POP use only a register; the address field is ignored.

POP z n Pop top of stack to register

Example: POP REG3

SP ← 7FFFFFF7 REG3 ← 98765432 z ← 0 n ← 1

Arithmetic Instructions

ADD z n c v Add number specified by the address field to the
register

Example: ADD REG3, 12345678

FFFFFFF8
10101234

(1) 1010122C

REG3 ← 1010122C z ← 0 n ← 0 c ← 1 v ← 0

ADC z n c v Add with carry; add number specified by the address
field to the register and the c flag

Example: ADC REG3, 12345678 (c was 1)

REG3 ← 1010122D z ← 0 n ← 0 c ← 1 v ← 0

Example: ADC REG3, 12345678 (c was 0)

REG3 ← 1010122C z ← 0 n ← 0 c ← 1 v ← 0

SUB z n c v Subtract number specified by the address field from
the register

Example: SUB REG3, 12345678

1

FFFFFFF8

EFEFEDCB

(1) EFEFEDC4

REG3 ← EFEFEDC4 z ← 0 n ← 1 c ← 1 v ← 0

CMP z n c v Compare; behaves the same as subtract, but does not
store the difference back to the register. (It is used to
compare the same number with several words from
memory without having to reload the register.)

542 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 542

Example: CMP REG3, 12345678

z ← 0 n ← 1 c ← 1 v ← 0

INC z n Increments number specified by the address; ignores
RN

Example: INC 12345678

M[12345678] ← 10101235 z ← 0 n ← 0

Logic, Shift, and Rotate Instructions

NOT z Bit-by-bit complement; ignores RN

Example: NOT 12345678

M[12345678] ← EFEFEDCB z ← 0

AND z n Bit-by-bit AND of register with number specified by
the address

Example: AND REG3, 12345678

1111 1111 1111 1111 1111 1111 1111 1000

AND 0001 0000 0001 0000 0001 0010 0011 0100

0001 0000 0001 0000 0001 0010 0011 0000

REG3 ← 1010230 z ← 0 n ← 0

ASR z Arithmetic shift right of number specified by the
address; number of places specified by the right 5 bits
of RN (IR7:11)*

Example: ASR 3, 12345678

M[12345678] ← 02020246 z ← 0

ROR Rotate right number specified by the address; number
of places specified by the right 5 bits of RN

Example: ROR 3, 12345678

M[12345678] ← 82020246

Branch Instructions
JMP† Jump to the address if the condition specified by the right

4 bits of RN (IR8:11) is met; otherwise, continue to the next
step. Branch conditions are specified in Table 10.1.

CLL Call subroutine, save return address on the stack.
Branch conditions are specified in Table 10.1.

RTS Return from subroutine (unconditional). Pop address
from stack.

10.1 Description of Model 543

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*The right 5 bits of the RN field is treated as a number between 0 and 31, not as a register
reference.
†For conditional Jumps and Calls, the condition is specified by a hexadecimal digit, such
as JM2 for Jump if n is 1 or CL7 for Call if v � 0.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 543

544 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.3 We will look at instructions referencing register 4 (REG4), using Page zero
addressing, where

Bits 16 to 31 of this instruction word are AB07
PC � 12341234
REG4 � 00000102
REG63 (SP) � 7FFFFFF5
M[0000AB07] � 81111111

M[7FFFFFF6] � 00000000

We will examine which registers and memory locations are changed for
each instruction type. Unless indicated otherwise, the PC is incremented to
12341235.

LOD REG4 ← 81111111 z ← 0 n ← 1
STO M[0000AB07] ← 00000102
PSH M[7FFFFFF5] ← 00000102 REG63(SP) ← 7FFFFFF4
POP REG63 (SP) ← 7FFFFFF6 REG4 ← 00000000

z ← 1 n ← 1
ADD REG4 ← 81111213 z ← 0 n ← 1 c ← 0 v ← 0
ADC For c � 0, same as ADD, for c � 1

REG4 ← 81111214 z ← 0 n ← 1 c ← 0 v ← 0
SUB REG4 ← 7EEEEFF1 z ← 0 n ← 0 c ← 0 v ← 0
CMP z ← 0 n ← 0 c ← 0 v ← 0
INC M[0000AB07] ← 81111112 z ← 0 n ← 1
NOT M[0000AB07] ← 7EEEEEEE z ← 0
AND REG4 ← 00000100 z ← 0 n ← 0
ASR M[0000AB07] ← F8111111 z ← 0 (4 places)
ROR M[0000AB07] ← 18111111
JMP PC ← 0000AB07
CLL PC ← 0000AB07 M[7FFFFFF5] ← 12341235

REG63 (SP) ← 7FFFFFF4

RTS REG63 (SP) ← 7FFFFFF6 PC ← 00000000

[SP 3, 4; EX 2, 3]

Table 10.1 Branch conditions.

RN8:11 Condition RN8:11 Condition

0000 z 1000 not used
0001 z� 1001 not used
0010 n 1010 not used
0011 n� 1011 not used
0100 c 1100 not used
0101 c� 1101 not used
0110 v 1110 not used
0111 v� 1111 always

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 544

10.2 CONTROL SEQUENCE FOR MODEL*
In this section, we will develop a straightforward control sequence to
implement that part of MODEL described in the previous two sections.
In the next sections, we will look at its implementation with a hard-wired
controller and a microprogrammed controller.

The first word of an instruction is read into the Instruction Register
(IR) in the first step of the control sequence. Next, at step 2, the program
counter is incremented to point to the next word (either the second word of
this instruction or, if this is a one-word instruction, the first word of the next
instruction). Throughout the design of the sequencer, we will use INC to
represent an incrementer and DEC to represent a decrementer. In practice,
there may be such a device as part of the ALU, or these may be imple-
mented using the adder, putting a 1 or �1 on one of the inputs. Also, at step
2, we branch to step 60, the instruction decode step for those instructions
where no address is required, or continue to step 3 for address computation.

1. AD � PC; read � 1; IR ← DATA.

2. PC ← INC[PC];

next: 60 (IR0), 3. (else).

The addressing mode of all one-word instructions begins with a 0, and
that for two-word instructions begins with a 1. At step 3, we separate these.

3. next: 12 (IR12), 4 (else)

4. next/IR13:15: 5, 1, 6, 1, 1, 1, 10, 11.

Unused codes are treated as no-ops, branching back to step 1 to
fetch a new instruction. When addressing is completed, the address (if
there is one) is stored in EA; control then goes to step 18 to fetch data.
Those addressing modes that produce data, but no address (immediate
and register), store that data in WORK and branch to step 20.

For register and register indirect addressing, bits 26 to 31 specify the
register. Thus, at step 5, that register is moved to WORK (for register
addressing), and control goes next to step 20. At steps 6 (for register indi-
rect), that register is moved to EA, with control going to step 18.

Register

5. WORK ← REG/IR26:31;

next: 20.

Register Indirect

6. EA ← REG/IR26:31;

next: 18.

10.2 Control Sequence for Model 545

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*A complete listing of the control sequence for a hard-wired controller implementation of
MODEL is found in Appendix A. To follow the design from this section, ignore the
parentheses around step numbers in the appendix.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 545

For Page zero addressing, the address field (IR16:31) is zero-extended
(that is, leading 0’s are added to make the number 32 bits). For relative
addressing, the sign-extended address field is added to the program
counter (which had already been incremented to point to the next instruc-
tion at step 2). Both produce an address and thus branch to step 18.

Page Zero

10. EA ← 0000, IR16:31;

next: 18.

Relative

11. IR16: EA ← ADD1:32[FFFF, IR16:31; PC; 0]

IR16�: EA ← ADD1:32[0000, IR16:31; PC; 0]

next: 18.

The remaining three address modes all require a second word. At
steps 13 and 14, the second word of the instruction is read into EA, and
the program counter is incremented. For direct addressing, the second
word is the effective address and is sent to EA. For indirect addressing,
the second word is the address where the effective address will be found.
Thus, after the second word is read at step 13, that memory location is
read (step 15) and its contents are sent to EA.

Read Second Word, Direct

13. AD � PC; read � 1; EA ← DATA.

14. PC ← INC[PC];

next/IR13:15: 18, 15, 1, 1, 16, 1, 1, 1.

Indirect

15. AD � EA; read � 1; EA ← DATA;

next: 18.

For immediate addressing, the second word is the data and is sent to
WORK, and control branches to step 20 (since a read is not needed for data).

Immediate

16. WORK ← EA;

next: 20.

At step 18, we read the data from the effective address register, EA,
into WORK. We could have a branch to skip this step for those instruc-
tions that do not require data (such as store, jump, and call).

Data Read

18. AD � EA; read � 1; WORK ← DATA;

next: 20.

546 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 546

We want to add two new addressing modes; register indirect with auto-post-
incrementing, and short immediate. Assume that step 4 branches to steps 7
and 9 for these. Register indirect with auto-post-incrementing produces the
same address as register indirect, but also increments the register after using
it. For short immediate, the address field is sign-extended.

Register Indirect with Auto-Post-Incrementing

7. EA ← REG/IR26:31.

8. REG/IR26:31 ← INC[REG/IR26:31];

next: 18.

Short Immediate

9. IR16: WORK ← FFFF, IR16:31;

IR16�: WORK ← 0000, IR16:31;

next: 20.

10.2 Control Sequence for Model 547

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.4

The details of the instruction decode step (or steps) are not shown,
since we did not specify the coding of the op-code and we are imple-
menting the controller for only a few instructions. We will show the
implementation of the individual instructions, using step numbers begin-
ning at 25.

Load register requires only one step, after which it returns to step 1 to
fetch a new instruction. On Store, the result goes to the register specified
by IR26:31 for register addressing (IR12� � IR13� � IR14� � IR15�)
and to memory for all other types. Store does not permit immediate
addressing; it is treated as a no-op.

LOD

25. REG/IR6:11 ← WORK; z ← (OR[CPUBUS]�;
n ← CPUBUS0;

next: 1.

STO

26. WORK ← REG/IR6:11.

27. next: 28 (IR12� � IR13� � IR14� � IR15�), 1
(IR12 � IR13 � IR14� � IR15�), 29 (else).

28. REG/IR26:31 ← WORK;

next: 1.

29. ADIN � EA; DATA � WORK; write � 1;

next: 1.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 547

Push and Pop are implemented after a decoding branch from step
60. Push writes to the location pointed to by the stack pointer and then
decrements the pointer. Pop first increments the stack pointer and then
reads.

PSH

65. ADIN � SP; DATA � REG/IR6:11; write � 1.

66. SP ← DEC[SP];

next: 1.

POP

67. SP ← INC[SP].

68. ADIN � SP; read � 1; REG/IR6:11 ← DATA;

z ← (OR[CPUBUS])�; n ← CPUBUS0;

next: 1.

The addition and subtraction instructions are each only one step. The
adder has a 33-bit output, the left bit being the carry. Two’s complement
overflow is detected when two numbers have the same sign (INA0 �
INB0) and the result has the opposite sign (CPUBUS0). The expressions
for each of the flag bits is the same for almost all instructions.

ADD

30. c, REG/IR6:11 ← ADD[REG/IR6:11; WORK; 0];

z ← (OR[CPUBUS])�; n ← CPUBUS0;

v ← INA0 � INB0 � CPUBUS0� � INA0� � INB0�
� CPUBUS0;

next: 1.

ADC

31. c, REG/IR6:11 ← ADD[REG/IR6:11; WORK; c];

z ← (OR[CPUBUS])�; n ← CPUBUS0;

v ← INA0 � INB0 � CPUBUS0� � INA0� � INB0�
� CPUBUS0;

next: 1.

SUB

32. c, REG/IR6:11 ← ADD[REG/IR6:11; WORK�; 1];

z ← (OR[CPUBUS])�; n ← CPUBUS0;

v ← INA0 � INB0 � CPUBUS0� � INA0� � INB0�
� CPUBUS0;

next: 1.

548 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 548

CMP

34. c ← ADD0[REG/IR6:11; WORK�; 1];

CPUBUS � ADD1:32[REG/IR6:11; WORK�; 1];

z ← (OR[CPUBUS])�; n ← CPUBUS0;

v ← INA0 � INB0 � CPUBUS0� � INA0� � INB0�
� CPUBUS0;

next: 1.

The next two instructions operate on numbers in WORK and ignore
the RN field. The results are stored back in either a register or memory,
using the steps already implemented for STO.

INC

36. WORK ← ADD1:32[00000001; WORK;0];

z ← (OR[CPUBUS])�; n ← CPUBUS0;

next: 27.

NOT

40. WORK ← WORK�; z ← (OR[CPUBUS])�;

next: 27.

AND uses operands from a register and WORK, storing the result back
in that register.

AND

42. REG/IR6:11 ← REG/IR6:11 � WORK;

z ← (OR[CPUBUS])�; n ← CPUBUS0;

next: 1.

The instruction decode step reaches step 43 for all of the shifts and
rotates. We assume that the op-code for ASR ends in 00, and ROR ends
in 10. We shift one place at a time; step 43 transfers to the step for the
store instruction when IR7:11 counts down to 0. IR7:11 � 00000 is treated
as zero, making these instructions no-ops.

43. IR7:11 ← DEC[IR7:11];

next: 44 (OR[IR7:11]), 27 (else).

44. next: 45 (IR4), 47 (else).

ASR

45. WORK ← WORK0, WORK0:30;
z ← (OR[CPUBUS])�;

next: 43.

10.2 Control Sequence for Model 549

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 549

ROR

47. WORK ← WORK31, WORK0:30;

next: 43.

If faster shifting were required, we could build a barrel shifter,
which would allow a shift of any number of places in one step. The hard-
ware for that is more complex, since each bit of WORK could be loaded
with any other bit or with 0. In contrast, the implementation we have
shown only requires that each bit be loaded with the bit on either side (or
0 for the first and last bits).

The conditional jump and call instructions depend on the variable
br, where

br � OR[DCD(IR8:11) � (z, z��, n, n��, c, c��, v,
v��, 0, 0, 0, 0, 0, 0, 0, 1)]

DCD is a decoder with four inputs and 16 outputs, one of which is 1.
That is ANDed with the 16-bit vector with each of the conditions, as
specified in Table 10.1. Thus, br is 1 if the specified branch condition is
satisfied and 0, otherwise. (Unused codes are treated as never branch.
They could be treated as an unconditional branch by changing all of the
0’s to 1’s.)

On jump, the program counter is loaded with the effective address if
the condition is met; otherwise, it returns to step 1. On a successful call,
the contents of the program counter are first pushed onto the stack and
then the effective address is moved to the PC.

JMP

50. br: PC ← EA;

next: 1.

CLL

51. next: 1 (br), 52 (else)

52. ADIN � SP; DATA � PC; write � 1.

53. SP ← DEC[SP].

54. PC ← EA;

next: 1.

Finally, the return from subroutine (unconditional) pops the address
from the stack and loads that into the program counter.

RTS

70. SP ← INC[SP].

71. ADIN � SP; read � 1; PC ← DATA;

next: 1.

550 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 550

10.2 Control Sequence for Model 551

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.5Add a new instruction to decrement the register pointed to by the RN field
and jump to the address if the result is 0. (This is a loop control instruction.)

The simplest way is to do the addressing and jump to step 55 from
step 20.

55. WORK ← REG/IR6:11.

56. REG/IR6:11 ← ADD1:32[FFFFFFFF; WORK; 0];

next: 1 (OR[CPUBUS]), 57 (else).

57. PC ← EA;
next: 1.

Since step 57 is identical to step 54, the branch at step 56 could go to 54,
eliminating step 57. It was necessary to move the register to WORK (step
55) because the bus structure up until this point put both the register and
the constant on INA. If the bus structure were modified, we could
combine steps 55 and 56.

Add a new instruction, Stack add. It adds the top two entries on the stack
and pushes the answer back onto the stack. The operands are destroyed.
No flags are involved.

This requires and additional register, WORK2, to store the second
number. (That register would be needed by more complex instructions,
such as Multiply. We pop the two operands, add them, and then push the
result onto the stack.

80. SP ← INC[SP].

81. ADIN � SP; read � 1; WORK ← DATA.

82. SP ← INC[SP].

83. ADIN � SP; read � 1; WORK2 ← DATA.

84. WORK ← ADD1:32[WORK2; WORK; 0].

85. ADIN � SP; DATA � WORK; write � 1.

86. SP ← INC[SP];

next: 1.

EXAMPLE 10.6

EXAMPLE 10.7Modify br so as to provide conditional branches for comparing two signed
and unsigned numbers.

Two numbers can be compared by subtracting them and then using a
conditional jump. The comparisons are between the number in the register
(REG/IR6:11), a, compared with the number specified by the address, b.
There are separate tests for signed and unsigned numbers based on the
flag bits.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 551

For signed numbers, when a � b, the result is negative unless there is
overflow. Thus, the condition is n � v.. For less than or equal, we have
z � n � v. The opposite of less than is greater than or equal, (n �

v)�, and greater than is the complement of less than or equal, z � n �

v.. For unsigned numbers, a � b is indicated by c��, less than or equal by
c�� � z, greater than by (c�� � z)�, and greater than or equal by c..

If the following codes are added to the list in Table 10.1,

1000 � (After SUB for signed numbers)
1001 �

1010 	

1011

1100 � (After SUB for unsigned numbers)

1101

then the definition of br becomes

br � OR[DCD(IR8:11) � (z, z��, n, n��, c, c��, v,
v��, n � v, z � n � v, (n � v)�,
(z � n � v)�, c�� � z, c � z��, 0, 1)]

552 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.8 Include a new instruction to add a set of numbers stored in consecutive
memory locations. The address field specifies the location of the first
number. The register specified by RN contains the size of the set (how many
numbers to be added) and is replaced by the sum. The flag bit c is set to
one iff any of the additions produced unsigned overflow.

Step 20 branches to step 90. We need three registers, in addition to
EA, in this process: one to hold the count, one to hold the sum as we are
adding, and one to hold each new number as it is read. One approach is to
store the sum in the register and the count in WORK. The additional register,
WORK2, would be connected to INB. (Note that this is a different connec-
tion from Example 10.6.)

90. WORK ← REG/IR6:11;

next: 91 (OR[CPUBUS]), 1 (else).

91. REG/IR6:11 ← 00000000; c ← 0.

92. AD � EA; read � 1; WORK2 ← DATA.

93. REG/IR6:11 ← ADD1:32[REG/IR6:11; WORK2; 0];

c ← c � ADD0[REG/IR6:11; WORK2; 0].

94. WORK ← DEC[Work];

next: 95 (OR[CPUBUS]), 1 (else).

95. EA ← INC[EA];

next: 92.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 552

On the first step, if the count is 0, the register already has the sum of 0 and
the instruction is complete. When the count goes to 0, the process is
complete. Since the sum is already in the register, we can go back to step
1 to fetch a new instruction. Note that EA must be connected to INA to
implement step 95. (That connection was not previously required.)

10.3 Implementation of Model Control Sequence 553

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

10.3 IMPLEMENTATION OF MODEL
CONTROL SEQUENCE WITH A
HARDWIRED CONTROLLER

The simplest implementation is to use a one-hot controller (where each
step corresponds to one flip flop). One flip flop of the controller has a 1
in it, and all others have a 0 (similar to the controller of Figure 9.9).

Such a controller for the instruction fetch and addressing portion of
the control sequence is shown in Figure 10.4. So as to make the figure
readable, the clock input line to each flip flop has been omitted, as have
the output signal lines from each of the flip flops (There are no outputs
from steps 3 and 4, which are only branches). Note at steps 11, there is a
pair of AND gates for the conditional data transfers.

The eight-way decoder for the 1-word instructions is enabled by the
Q� output of flip flop 4. One of the outputs of that decoder is active when
the controller is in step 4, putting a 1 into one of flip flops 5, 6, 10, or 11
at the next clock. (The unused addressing code outputs (1, 3, 4, and 5) are
not shown connected, but would all go to an OR gate at the input of flip
flop 1.) A second eight-way decoder for the 2-word instructions is
enabled by the Q� output of flip flop 14.

From the controller block diagram, it is easy to see that register address-
ing takes five clocks to reach step 20 (steps 1, 2, 3, 4, and 5). (For the purpose
of timing discussions, we will include the time in step 20 in the execution
portion.) Register indirect (step 6), Page zero (step 10), and Relative (step
11) each require five clocks (steps 1, 2, 3, 4, and one of 6, 10, or 11) to reach
step 18 and a sixth to reach step 20. Direct addressing takes six clocks (steps
1, 2, 3, 13, 14, and 18). Indirect uses a seventh clock period (step 15). Imme-
diate takes six clocks. (It uses step 16, but does not need step 18.)

The speed of the system can be greatly increased by taking advan-
tage of undelayed steps. Since IR was not changed at steps 3 and 4, step
3 can be undelayed. Next, we note that either step 4 or all of the steps
reached directly from step 4 can be made undelayed. That would mean
that steps 5, 6, 10, and 11 would be executed at the same time as the
branch at step 4, which does not change any registers nor utilize the
internal bus. Steps 1 to 18 become

1. AD � PC; read � 1; IR ← DATA.

2. PC ← INC[PC];

[SP 5, 6, 7, 8; EX 4, 5, 6, 7, 8, 9]

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 553

next: 60 (IR0), 3. (else).

(3.) next: 12 (IR12), 4 (else)

4. next/IR13:15: 5, 1, 6, 1, 1, 1, 10, 11.

(5.) WORK ← REG/IR26:31;

next: 20.

(6.) EA ← REG/IR26:31;

next: 18.

(10.) EA ← 0000, IR16:31;

next: 18.

(11.) IR16: EA ← ADD1:32[FFFF, IR16:31; PC; 0]

IR16�: EA ← ADD1:32[0000, IR16:31; PC; 0]

next: 18.

13. AD � PC; read � 1; EA ← DATA.

14. PC ← INC[PC];

next/IR13:15: 18, 15, 1, 1, 16, 1, 1, 1.

554 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

4

2

60

IR0

IR16

5

6

10

11

15

16

18

20

1 3

IR12

Q�

13 14
Q�

0

IR13
IR14
IR15

EN�

1
2
3
4
5
6
7

D
E

C
O

D
E

R

0

IR13
IR14
IR15

EN�

1
2
3
4
5
6
7

D
E

C
O

D
E

R

Figure 10.4 Controller for instruction fetch and addressing.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 554

15. AD � EA; read � 1; EA ← DATA;

next: 18.

16. WORK ← EA;

next: 20.

18. AD � EA; read � 1; WORK ← DATA;

next: 20.

This reduces the execution time for all 1-word addressing modes by
two clocks and the 2-word modes by one clock. That eliminates five (of
the 13) flip flops associated with steps 1 to 18. The controller is shown
in Figure 10.5.

One other small timing improvement could be made by checking at
step 18 whether it was necessary to fetch data. In particular, Jump, Call,
and Store do not require data. If the op-codes for those instructions (and
only those instructions) have a 1 in bit 2, then we could rewrite

(18.) next: 20 (IR2), 19 (else).

19. AD � EA; read � 1; WORK ← DATA.

That would save one clock time for these instructions.

10.3 Implementation of Model Control Sequence 555

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

4

2

60

IR0

IR16

15

16

18

20

1

IR12

Q�

13 14
Q�

0

IR13
IR14
IR15

EN�

1
2
3
4
5
6
7

D
E

C
O

D
E

R

0

IR13
IR14
IR15

EN�

1
2
3
4
5
6
7

D
E

C
O

D
E

R

Figure 10.5 Controller for instruction fetch and addressing.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 555

556 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

Table 10.2 Timing of Instructions.

Instruction (REG),PG-0
REG REL DIR IND IMM

LOD,ADD,ADC,
SUB,CMP,AND 4 5 6 5 5
STO,INC,NOT 5 6 7 6 —
JMP — 5 6 5 —
CLL — 7 8 7 —
ASR,ROR 5 � 2n 6 � 2n 7 � 2n 6 � 2n —
PSH,POP,RTS 3 (no addressing)

We could make step 20 undelayed. But then the first step of the
execution part of any of the instructions would be delayed, because they
all involve using the bus (which was also used in each of the steps lead-
ing to step 20). If step 20 is delayed, we can save a number of flip flops
in the controller by making the first step of each memory reference
instruction (24, 26, 30, . . .) undelayed.* Most instructions would take
only one clock time for execution (that at step 20). Exceptions include
those that require a store (STO, NEG, INC, DEC, and NOT), which
have a second clock at either step 28 or 29, and CLL, which requires
two extra clock times to push the program counter onto the stack. The
shifts and rotates also require two clocks for each place plus one extra
as it leaves the loop at step 43.† The DDL for MODEL is shown in
Appendix A.

The timing of the instructions is summarized in Table 10.2. The
dashes indicate that this addressing mode is not allowed for those
instructions.

*This approach results in the machine being slower by one clock for failed conditional
jumps and calls. We could rewrite step 50 as

(50.) next: 50a (br), 1 (else).

50a. PC ← EA;

next: 1.

Thus, if step 20 were undelayed, step 50 could still be undelayed, and failed conditional
jumps (and calls if we also modified step 51 in the same way) would take no clock times
for execution.
†If we build a separate decrementer to count, we could make step 43 undelayed and
would only need one clock time per place shifted.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 556

We will look at the timing for the new addressing mode and instructions
described in Examples 10.4, 10.5, 10.6, and 10.8.

10.4: Steps 7 and 9 can be undelayed. For the controller of Figure
10.5, Register Indirect with Auto-post-increment would take
one more clock time than register indirect. Short immediate
would take the same time as Register addressing.

10.5: Steps 55 can be undelayed. From step 20, this will take two
clock times if it does not jump (Steps 20 and 56) or three
clock times if it does jump (Steps 20, 56, and 57).

10.6: Only step 80 can be undelayed. This will take eight clock
times (including steps 1 and 2).

10.8: Step 90 can be undelayed, requiring one clock time if there
are zero numbers to add. Step 91 is executed once, and
steps 92, 93, and 94 are each executed n times and step 95
is executed n � 1 times, for a total of 4n � 1 (in addition to
the time for steps 1 to 18).

10.4 MODEL with a Slower Memory 557

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

EXAMPLE 10.9

[SP 9, 10, 11; Ex 10, 11, 12, 13]

EXAMPLE 10.10In order to speed the machine, one thought was to add an incrementer for
PC that does not use the bus. (Thus, instead of PC receiving all its inputs
from CPUBUS, there would be a multiplexer on the input to PC.)

Steps 4 and 14 could then be made undelayed (or 4, 15, and 16), since
the only reason that they are delayed is that the incrementing of PC used
the bus. Step 2 cannot be made undelayed, because the branch uses the
data being loaded into IR at step 1.

This would reduce the execution time of all instructions by one clock.

10.4 MODEL WITH A SLOWER MEMORY
If the main memory always took a fixed number of clock times, we could
modify the read and write steps accordingly. Say that we could connect
the address to ADIN and put a 1 on read at one clock time, and the
contents of that location would be on DATA two clock times later. Then,
steps 1, 2, 3, and 4 might be rewritten

1. AD � PC; read � 1.

2. PC ← INC[PC];

3. IR ← DATA.

4. next: 60 (IR0), 5. (else).

(4a.) next: 12 (IR12), 6 (else)

(4b.) next/IR13:15: 5, 1, 6, 1, 1, 1, 10, 11.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 557

Of course, the remaining steps would need to be renumbered. This only
adds one clock time, since now PC can be incremented during the read
process.

Steps 13 and 14 would now become

13. AD � PC; read � 1.

14. PC ← INC[PC].

14a. EA ← DATA;

next/IR13:15: 18, 15, 1, 1, 16, 1, 1, 1.

again, adding one clock time.
The write at step 29 would become

29. ADIN � EA; DATA � WORK; write � 1.

29a. .

29b. next: 1.

The other steps involving memory (for Call, Return, Push, and Pop)
would also have to be rewritten.

If memory required that the address and read be kept 1 for all three
clock times, that would not change the timing. Steps 1 to 3 would become

1. AD � PC; read � 1.

2. AD � PC; read � 1; PC ← INC[PC];

3. AD � PC; read � 1; IR ← DATA.

If write also required the signals to remain, then step 29 would become

29. ADIN � EA; DATA � WORK; write � 1.

29a. ADIN � EA; DATA � WORK; write � 1.

29b. ADIN � EA; DATA � WORK; write � 1;

next: 1.

If the amount of time for a read and write of memory were variable
(possibly depending on memory being used by another component),
there would need to be a signal from memory, such a memready. If we
must hold the inputs to memory until there is an answer, then step 1 is
replaced by

1. AD � PC; read � 1;

next: 2 (memready), 1 (else).

(2.) IR ← DATA.

PC cannot be loaded until the next clock time. If the memory inputs
were only required during the first clock period, we could replace steps
1 by

558 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 558

1. AD � PC; read � 1;

(2.) next: 4 (memready), 3 (else).

3. next: 2.

4. IR ← DATA.

For these two cases, the write at step 29 would become

29. ADIN � EA; DATA � WORK; write � 1;

next: 1 (memready), 29 (else).

or

29. ADIN � EA; DATA � WORK; write � 1.

(29a.) next: 1 (memready), 29b (else).

29b. next: 29a.

10.5 A MICROPROGRAMMED CONTROLLER
In this section, we will examine the ideas behind the design of micro-
programmed controllers. Such a controller replaces the sequential circuit
of a hard-wired controller by a small amount of control logic and a
special memory in which a representation of the control sequence (the
DDL) is stored. The steps of that sequence (the microinstructions) are
fetched and executed by the control logic.

ASIDE: A computer with a microprogrammed controller has two distinct
memories: the main memory of the computer in which instruction and data
are stored, and the special memory, often referred to as the control store,
where the representation of the control sequence is stored. These memories
are independent and are typically different sizes. The control store is often
a Read-Only Memory (ROM), since the control sequence that is stored in it
rarely, if ever, changes.

The block diagram of Figure 10.6 shows the basic structure of a
microprogrammed controller and its connections to the rest of the
machine. Those connections are identical for both the hard-wired and
microprogrammed controller. It is only the structure of the inside of the
controller box that has changed.

The MAR contains the location in the control store of the current
microinstruction (the one that is being executed during this clock period).
The output of the ROM is a set of lines containing that microinstruction.
As each instruction is executed, the next address logic produces the
address of the next microinstruction (DDL step). Often, that logic just
performs incrementation. For data transfers and connections, the decode
logic produces the appropriate control signals for the rest of the machine.

The sequencer is a very small hard-wired controller that controls the
fetching and sequencing of the microinstructions from the control store.

10.5 A Microprogrammed Controller 559

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 559

It contains only one (or at most two or three) flip flops. The decode logic,
which produces the signals to the rest of the machine, depends only on
what data transfers and connections are required. The next address logic
is based on the branch conditions in the DDL steps. Both logic blocks are
fairly simple. Neither depends on the details of the control sequence.
That sequence is stored (in coded form) in the ROM. One advantage of
microprogramming is that the controller logic is simpler than for the
hard-wired version. The largest part of the controller is the control store.
But that can be implemented using a rather inexpensive off-the-shelf
ROM. The hard-wired controller for a large computer consists of an
irregular collection of flip flops and gates, which must be fabricated
from scratch for each new controller.

Another advantage of microprogramming becomes apparent when
the designer wishes to make a modification in the control sequence. This
may occur because of an error in the original version or because a new or
modified instruction is being introduced. We must then rewrite a portion
of the DDL sequence. If this has been implemented in a hard-wired
controller, then the logic must be changed and a new sequencer fabri-
cated. If the sequencer was implemented on a VLSI chip, the old chip is
now useless and a new one must be produced. On the other hand, in a
microprogrammed controller, the modifications are usually easier. If, as
is usually the case, the data movements and branch conditions required
for this change were already implemented (either because they were

560 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

Controller

Control
Store

(ROM) Main
Memory

ALU
- -

Registers

Next
Address

Logic

MAR

Decode
Logic

Sequencer

Figure 10.6 A microprogrammed controller.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 560

needed for some other instruction or because the hardware designer
provided extra features for possible later expansion), then no hardware
modifications need be made. All that must be done is that a new
sequence must be loaded into the control store. ROM programmers
allow that to be done quickly and inexpensively.

The major disadvantage of microprogramming is speed. A micro-
programmed machine is usually slower than a hard-wired one. This is
partly a result of the limitations of how much can be stored in a single
word in the control store. Whereas a DDL step can contain an unlimited
number of data transfers and connections, as well as a multiway branch
and conditional data transfers, it is not practical to allow for all of these
possibilities in the coding of microinstructions. Thus, some DDL steps
will result in two or more steps in a microprogrammed implementation.
A second factor is that each step must be obtained from memory; that
takes a clock time. Those steps that are undelayed in a hard-wired imple-
mentation do require a clock time in a microprogrammed machine.

10.6 SOLVED PROBLEMS

1. We have two new address types in MODEL

a. Page zero indirect

b. Indexed, where IR26:31 specify which register is used as an
index register. The contents of the second word is added to the
index register.

Specify what happens on an instruction that loads REG5 using
the following values:

This instruction is at location 10000000

The second word of the instruction (if any) is 12345678

Bits 16 to 31 of this instruction word are 9ABC

REG4 � FFEE0000

REG3C � 22446688

M[00009ABC] � 12345678

M[12345678] � FDECBA98

M[3478BD00] � 11223344

a. REG5 ← FDECBA98 PC ← 12341235

The Page zero address (00009ABC) contains the address of
the data to be loaded.

b. Address � 22446688 � 12345678 � 3478BD00

REG5 ← 11223344 PC ← 12341236

The index register is specified by the last 6 bits of the first
instruction word (11 11002 � 3C16)

10.6 Solved Problems 561

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 561

2. We have an instruction to store REG4 at the location specified
by the address field. Assume the values of Solved Problem 1.
What registers and memory locations are changed for each of
the address types?

a. Register

b. Register indirect

c. Page zero

d. Relative

e. Direct

f. Indirect

g. Immediate

a. Register REG3C ← FFEE0000 PC ← 10000001

b. Register indirect M[22446688] ← FFEE0000
PC ← 10000001

c. Page zero M[00009ABC] ← FFEE0000 PC ← 10000001

d. Relative EA � 10000000 � 1 � FFFF9ABC � 0FFF9ABD
M[0FFF9ABD] ← FFEE0000 PC ← 10000001

e. Direct M[12345678] ← FFEE0000 PC ← 10000002

f. Indirect M[FDECBA98] ← FFEE0000 PC ← 10000002

g. Immediate PC ← 10000001 (This is treated as a no-op since
Immediate is not allowed for stores.)

3. For each of the following instructions, what registers, flag bits,
and memory locations are changed for each of the address
types? Assume the following initial values for each instruction:

This instruction is at location 10000000

z � 0 n � 1 c � 1 v � 0

REG5 � 12345678

REG12 � 22446688

REG63 � 88888888

M[00009ABC] � EDCBA988

M[12345678] � 2468ACE0

M[20001000] � 7E110000

M[7E110000] � 345678FF

M[88888887] � 00112233

M[88888888] � 11223344

M[88888889] � 22334455

a. STO REG12, (REG5)

b. PSH REG5

562 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 562

c. POP REG5

d. ADD REG5, 20001000

e. ADC REG5, 20001000

f. ADD REG5, z9ABC

g. SUB REG5, REG63

h. CMP REG12, 88888888

i. INC 00009ABC

j. NOT REG12

k. AND REG5, (20001000)

l. ASR 3, REG63

m.ASR 5, 20001000

n. ROR 8, (REG5)

o. JMP (REG5)

p. JM4 (REG5)

q. JM5 12341234

r. CLL (REG5)

s. RTS

a. Register indirect, EA � 12345678

M[12345678] ← 22446688 PC ← 10000001

b. M[88888888] ← 12345678 REG63 ← 88888887

PC ← 10000001

c. REG63 ← 88888889 REG5 ← 22334455 z ← 0 n ← 0

PC ← 10000001

d. 12345678

7E110000

90455678

REG5 ← 90455678 z ← 0 n ← 1 c ← 0 v ← 1

PC ← 10000002

Note that there is signed number overflow since both operands
begin with a 0 (binary) but the result begins with a 1.

e. REG5 ← 90455679 z ← 0 n ← 1 c ← 0 v ← 1

PC ← 10000002

f. 1 2 3 4 5 6 7 8

EDCBA988

(1) 0 0 0 0 0 0 0 0

REG5 ← 1234F134 z ← 1 n ← 0 c ← 1 v ← 0

PC ← 10000001

10.6 Solved Problems 563

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 563

g. 1

12345678

77777777

89ABCDF0

REG5 ← 89ABCDF0 z ← 0 n ← 1 c ← 0 v ← 1

PC ← 10000001

h. 1

22446688

EEDDCCBB (Bit-by-bit complement of 11223344)

(1) 11223344

z ← 0 n ← 0 c ← 1 v ← 0 PC ← 10000002

REG12 is not changed.

i. M[00009ABC] ← EDCBA989 PC ← 10000002 z ← 0
n ← 1

Note that this uses direct addressing and requires a 2-word
instruction. We could achieve the same result using Page zero
addressing as in part (k).

j. REG12 ← DDBB9977 z ← 0 PC ← 10000001

k. 12345678 AND 345678FF

REG5 ← 10145078 z ← 0 n ← 0 PC ← 10000002

l. REG63 ← 11111111 z ← 0 PC ← 10000001

m. M[20001000] ← 03F08800 z ← 0 PC ← 10000002

n. M[12345678] ← E02468AC z ← 0 PC ← 10000001

o. PC ← 12345678

p. PC ← 12345678 (since c � 1)

q. PC ← 10000002 (since c � 0)

It does not jump but likely reads the second word.

r. PC ← 12345678 M[88888888] ← 10000001

REG63 ← 88888887

s. REG63 ← 88888889 PC ← 22334455

4. For each part, a set of consecutive instructions are executed.
Use the initial values of Solved Problem 3. Indicate what
changes are made at the end of each set.

a. ADD REG12, z9ABC

ADC REG5, 7E110000

b. PSH REG5

PSH REG12

POP REG1

564 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 564

c. CLL 2000000

RTS

a. First instruction

22446688

EDCBA988

(1) 1 0 1 0 1 0 1 0 → REG12 z ← 0 n ← 0 c ← 1 v ← 0

Second instruction

1

12345678

345678FF

468ACF78

REG12 ← 10101010 REG5 ← 468ACF78 PC ← 10000003

z ← 0 n ← 0 c ← 0 v ← 0

b. First instruction

M[88888888] ← 12345678 REG63 ← 88888887

Second instruction

M[88888887] ← 22446688 REG63 ← 88888886

Third instruction

REG63 ← 88888887 REG1 ← 22446688 z ← 0 n ← 0

Note that M[88888887] still has 22446688.

c. First instruction

PC ← 20000000 M[88888888] ← 10000002

REG63 ← 88888887

Second instruction

PC ← 10000002 REG63 ← 88888888

Note that M[88888888] still has 10000002.

5. In Solved Problem 1, we discussed two additional address
types. Show the changes in the DDL needed to implement
these if Page zero indirect is coded 0101 and Indexed is coded
1010.

4. next/IR13:15: 5, 1, 6, 1, 1, 7, 10, 11.

Page Zero Indirect

7. EA ← 0000, IR16:31.

8. AD � EA; read � 1; EA ← DATA;

next: 18.

10.6 Solved Problems 565

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 565

Indexed

14. PC ← INC[PC];
next/IR13:15: 18, 15, 17, 1, 16, 1,
1, 1.

17. EA ← ADD1:32[REG/IR26:31; EA; 0].

This assumes that the EA register is connected to INA, which
was not the case in Figure 10.3. Otherwise, we would need to
move EA to WORK first.

17. WORK ← EA

17a. EA ← ADD1:32[REG/IR26:31; WORK; 0];

next: 18.

6. Another possible addressing mode is indirect with auto-pre-
decrementing. Assume the branch at step 14 goes to step 17.

17. WORK ← DEC[EA].

17a. AD � EA; DATA � WORK; write � 1.

17b. EA ← WORK;

next: 18.

Note that we must preserve the second word of the instruction
to store the decremented address there. Thus, the effective
address is not loaded into EA until the last step.

7. We wish to add a new addressing type—multilevel indirect
addressing. When an indirect address is fetched, the first bit is
an indicator of whether that is the effective address or is still
indirect. In this mode, all indirect addresses begin with the same
bit as the address in the instruction. The branch at step 14 will
branch to step 90 for this address type.

90. AD � EA; read � 1; EA1:31 ← DATA1:31;

next: 91 (DATA0), 18 (else).

Step 90 will be executed repeatedly until the first bit of the
address being read is 0. This could result in an endless loop.
To prevent that, some machines count how many times it
loops, and terminate this after a fixed number of levels of
indirection.

90. WORK ← 00000000.

91. AD � EA; read � 1; EA1:31 ← DATA1:31;

next: 92 (DATA0), 18 (else).

92. WORK ← INC[WORK];

566 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 566

next: 1 (AND[CPUBUS28:31]), 91
(else).

On the 15th pass through the loop, WORK contains 0000000E,
and the right 4 bits of the incrementer output are all 1’s, termi-
nating the instruction (treating it as a no-op).

8. Design an instruction to multiply two unsigned numbers and
store the result (or the 32 less significant bits) in the register
from which the first operand comes. We will need to add two
registers to implement this. The instruction sets the c flag if the
answer does not fit into 1 word, and the z flag.

We initialize by setting a new 5-bit register, COUNT, to 0,
putting one operand (the multiplier) in WORK, and putting the
other (the multiplicand) in the new 32-bit register, WORK2. The
partial product is stored in the register from which one operand
came, which is also initialized to 0.

100. WORK2 ← REG/IR6:11.

101. REG/IR6:11 ← 00000000; COUNT ← 00;
c ← 0.

102. WORK ← 0, WORK0:30;

next: 104 (WORK31�), 103 (else).

103. REG/IR6:11 ← ADD1:32[REG/IR6:11; WORK2;
0];

z ← (OR[CPUBUS])�;c ← c �

ADD0[REG/IR6:11; WORK2; 0].

104. COUNT ← INC[COUNT];

next: 105 (OR[COUNT]), 1 (else).

105. WORK2 ← WORK21:31, 0;

next: 102.

If the right bit of the multiplier is 1, we add the multiplicand to
the partial product, shifting the multiplier one place to the right.
(Each time we come back to step 103, we will look at another
bit of the multiplier.) COUNT keeps track of the number of bits
(32). After adding, the multiplicand is shifted to the left (as we
do in multiplication by hand). If there is a carry out of the adder
at any stage, the c bit is set and remains set. Note that if there is
overflow, we only get the lower 32 bits of the answer.

9. We wish to design a new instruction to perform double-precision
addition. The first operand and the result come from a register
pair, specified by the first 5 bits of the RN field. The low-order
half of the number is stored in the odd register (register number
ending in 1), and the high-order half is in the even register. The

10.6 Solved Problems 567

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 567

other operand comes from two consecutive memory locations,
where the low-order part comes from the location specified by
EA and the high-order part comes from the previous location.
(Register and Immediate addressing is not allowed.) Step 20
branches to step 100 for this instruction.

(100.) c, REG/(IR6:10, 1) ←
ADD[REG/(IR6:10, 1); WORK; 0];

z ← (OR[CPUBUS])�.

101. EA ← DEC[EA].

102. AD � EA; read � 1; WORK ← DATA.

103. c, REG/(IR6:10, 0) ← ADD[REG/(IR6:10,
c); WORK; 0];

z ← z � (OR[CPUBUS])�; n ← CPUBUS0;

v ← INA0 � INB0 � CPUBUS0� � INA0� �

INB0� � CPUBUS0;

next: 1.

The carry from the first addition is used to make the second one an
add with carry. The z flag is set only if both halves of the answer
is 0. The n and v flags are determined by the most significant bit.

10. Using the controller design from Appendix A, show a block
diagram of the hard-wired controller to implement the STO
instruction.

568 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

28

D
ec

od
er

29 20

Q�
write � 1

DATA � WORK
ADIN � EA

REG/IR26:31 WORK

WORK REG/IR6:11

IR13 •

IR0:5

IR�14 • IR�15

IR12 IR13 �IR14

IR�12 • IR�15 IR�14 • IR�13 •

1

27

26

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 568

The flip flop and the decoder of step 20 are shown first. Steps
26 and 27 are undelayed, and thus there is no flip flop there. On
completion of this instruction, the controller returns to step 1.

11. Compare the speed of double-precision addition, assuming direct
addressing, for an ADD instruction followed by ADC with the
double-precision instruction designed in Solved Problem 9.

ADD: 6 ADC: 6 Total: 12 (from Table 10.2)

In the new instruction, step 100 is undelayed, and thus it would
take 9 clocks (1, 2, 13, 14, 18, 20, 101, 102, 103). If we had a
special incrementer for EA (that does not use the bus), step 101
could also be undelayed, reducing the time to 8.

12. Design a small computer with the following instruction format:

10.6 Solved Problems 569

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

0 2 3 4 5 6 7 31

OP RN AT Address

where memory has 225 words, 32 bits each. All instructions fit in
a single word. There are four 32-bit registers (similar to the 64
in MODEL). The bus structure and the memory signaling is the
same as in MODEL. There are no flag bits.

There are four addressing types

00 Direct

01 Immediate (sign-extended)

10 Relative to this instruction

11 Indirect (up to three levels)

Bit 0 of the address word indicates direct (0) or
indirect (1). After three levels, bit 0 is ignored.

The operations are

000 Load

001 Increment (RN ignored)

010 Add

011 Subtract

100 Jump unconditional (RN ignored)

101 Jump conditional—only allows relative addressing

Based on number in register with condition specified by AT

00 � 0

01
 0

10 � 0

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 569

11 � 0

110 Store

111 not used in this problem

Write a complete DDL description of a hard-wired controller for
this machine. Do not worry about unused or illegal combina-
tions. Annotate your DDL. Make it run as fast as possible by
making steps undelayed.

The first step here is

1. ADIN � PC; read � 1; IR ← DATA.

There is one adder for all addition, subtraction, and incre-
menting, as in MODEL. It has two 32-bit inputs and a carry-in.
There is only a 32-bit output (no need for the carry-out).

Show a table indicating the execution time for each instruc-
tion and each addressing type.

SYSTEM NAME: NEW COMPUTER

FLIP FLOPS: PC[0:24], IR[0:31],
W[0:31], R[0:3; 0:31].

COMMUNICATION BUSES: DATA[0:31],
ADIN[0:24].

INTERNAL BUSES: CPUBUS[0:31],
INA[0:31], INB[0:31].

OUTPUT LINES: read, write.

1. ADIN � PC; read � 1; IR ← DATA.

2. next: 5 (IR0 � IR1� � IR2), 3 (else).

(3.)next/IR5:6: 10, 4, 5, 6.

Immediate

(4.)IR7�: W ← 00, IR7:31;

IR7: W ← 7F, IR7:31;

next: 12.

Relative

(5.)IR7:31 ← ADD7:31[IR; 0
7, PC; 0];

next: 10.

570 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 570

Indirect

(6.)ADIN � IR7:31; read � 1; IR7:31 ←
DATA7:31;

next: 7 (CPUBUS0), 10 (else).

7. ADIN � IR7:31; read � 1; IR7:31 ←
DATA7:31;

next: 8 (CPUBUS0), 10 (else).

8. ADIN � IR7:31; read � 1; IR7:31 ←
DATA7:31;

next: 10.

Data Fetch?

(10.) next: 12 (IR0), 11 (else).

11. ADIN � IR7:31; read � 1;
W ← DATA.

Decode

12. PC ← ADD[132; 07, PC; 0];

next/IR0:2: 15, 16, 18, 19, 20, 21,
26, 1.

Load

15. R/IR3:4 ← W;

next: 1.

Increment

16. W ← ADD[132; W; 0]

17. ADIN � IR7:31; DATA � W; write � 1;

next: 1.

Add

18. R/IR3:4 ← ADD[R/IR3:4; W; 0];

next: 1.

10.6 Solved Problems 571

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 571

Subtract

19. R/IR3:4 ← ADD[R/IR3:4; W’; 1];

next: 1.

Jump

20. PC ← IR7:31;

next: 1.

Jump Conditional

21. CPUBUS � R/IR3:4;

next/IR5:6: 22, 23, 24, 25.

(22.) next: 1 (OR[CPUBUS]), 20 (else).

(23.) next: 20 (CPUBUS0� �

OR[CPUBUS]), 1 (else).

(24.) next: 20 (OR[CPUBUS]), 1 (else).

(25.) next: 20 (CPUBUS0), 1 (else).

Store

26. ADIN � IR7:31; DATA � R/IR3:4;
write � 1;

next: 1.

END DESCRIPTION

Note that we did not increment the Program Counter until
after the addressing, since relative addressing is based on the
address of the current instruction (not the next, as in
MODEL).

The following graph shows the sequence of steps. The first
step of the execution phase cannot be undelayed, since the
decode step uses the bus while incrementing the PC.

572 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 572

DIR 5 6 4 —

IMMED 4 — — —

REL 5 6 4 5

IND 1 5 6 4 —

IND 2 6 7 5 —

IND 3 7 8 6 —

10.6 Solved Problems 573

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

(4)

(10)

11

12

15 16
17

18 19 21

(22)

20

(23) (24) (25)

26

LOD
2

LOD

ADD

SUB

INC STO

JMP UNC

JMP FAIL

JMP SUC

INC
3

ADD
2

SUB
2

JMP
2

JMP CON
2/3

STR
2

(5)

1
2

(3)

(6)
DIR

8

7

IND REL

IMM DIR
IMM
REL
IND1
IND2
IND3

2/3
2
2/3
2/3
3/4
4/5

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 573

10.7 EXERCISES

1. For the following values (in MODEL):

This instruction is at location 76543210

The second word of the instruction (if any) is 22223333

Bits 16 to 31 of this instruction word are 4547

REG1 � 79864322

REG2 � 12341234

REG7 � FFFFFF00

M[00000001] � 22222222

M[00004547] � 23423423

M[22223333] � 00000001

M[76547758] � 11223300

M[FFFFFF00] � 10101010

Show what registers are changed for each of the addressing
types and each of these instructions (including the PC, but not
the flag bits):

i. Load REG1

★ii. Add to REG2

a. Register

b. Register Indirect

c. Page zero

d. Relative

e. Direct

f. Indirect

g. Immediate

2. For each of the following instructions, what registers, flag bits,
and memory locations are changed for each of the address
types? Assume the following initial values for each instruction:

PC � 11111111

z � 1 n � 1 c � 1 v � 1

REG1 � 12345678

REG2 � FFFFFFFF

REG3 � 87654321

REG3F � FFFFFFF0

M[00001234] � 00000010

M[10000000] � 91110000

574 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 574

M[12345678] � 2468ACE0

M[2468ACE0] � 3456789A

M[FFFFFFEF] � 00112233

M[FFFFFFF0] � 11223344

M[FFFFFFF1] � 22334455

a. i. STO REG2, (REG3)

ii. STO REG1, 10000000

iii. STO REG3, z1000

iv. STO REG2, REG3

v. LOD REG2, REG3

b. i. PSH REG1

ii. POP REG1

c. i. ADD REG1, REG2

ii. ADD REG2, REG1

iii. ADD REG1, #34565432

iv. ADD REG1, 10000000

v. ADD REG3, 10000000

d. i. ADC REG2, (REG3F)

ii. ADC REG2, z1234

iii. ADC REG2, #FFFFFFFF

e. i. SUB REG2, 00001234

ii. SUB REG1, REG2

f. i. CMP REG3, 2468ACE0

ii. CMP REG3, #87654321

iii. CMP REG3, REG2

g. i. INC 10000000

ii. INC REG2

iii. INC (REG1)

h. i. NOT REG1

ii. NOT (12345678)

i. i. AND REG1, z1234

ii. AND REG3, #000000F0

iii. AND REG1, (FFFFFFF1)

j. i. ASR 3, REG3F

ii. ASR 5, 10000000

iii. ASR 5, (REG1)

k. i. ROR 8, (REG1)

ii. ROR 31, REG3

10.7 Exercises 575

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 575

l. i. JMP (REG3)

ii. JMP z4567

iii. JM6 z4567

iv. JM7 z4567

m. i. CLL (REG1)

ii. CL4 22223333

n. RTS

3. For each part, a set of consecutive instructions are executed.
Use the initial values of Exercise 2. Indicate what changes are
made at the end of each set.

a. ADD REG1, REG7

ADC REG2, #00004567
★b. PSH REG1

PSH REG2

POP REG3

PSH REG1

POP REG4

POP REG5

POP REG6

c. CLL 1000000

PSH REG2

POP REG6

RTS

4. Modify the DDL of MODEL to add two new addressing types:
modes 1010 and 1011:

a. Indirect, then indexed by the register specified by IR26:31

b. Indexed by the register specified by IR26:31, then indirect

5. Design a different version of multiple indirect from the one in
Solved Problem 7. The address will be Page zero and all indi-
rect addresses will also be Page zero.

6. Solved Problem 8 only provides a 32-bit product. Modify the
design so that it will produce a 64-bit product, storing the
answer in a register pair. (See Solved Problem 9.) Only the z bit
should be changed.

7. a. Revise the solution to Solved Problem 9 to allow the second
operand to come from a register pair.

b. Also, allow the second operand to be immediate. In the case of
low-order half stored in the second word.

576 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 576

8. ★a. We wish to provide several double-precision instructions.
They work on data from a register pair and from another
register pair, memory, or immediate (as described in Exer-
cise 7b). Revise steps 1 to 18 to, for double-precision, fetch
the data specified by the address field into WORK for the
least significant part and into WORK2 for the most significant
half. Assume that only such instructions have a 1 in bit 2
(IR2) of the op-code. (It is still to work as before for single-
precision, IR2 � 0.)

b. Redo Solved Problem 9 to accommodate this change.

9. Show the DDL for an instruction to count the number of 1’s in
the word specified by the address field, storing the answer in the
register specified by RN.

10. Using the controller design from Appendix A, show a block
diagram of the hard-wired controller to implement the shifts and
rotates (starting at step 43), assuming the decoder at step 20
reaches step 43.

11. Consider the multiplication instruction of Solved Problem 8.

a. How long does the execution take, as a function of the number
of 1’s in the multiplier, n?

b. If registers could be cleared without using the bus and
COUNT could be incremented without using the bus, what
steps could be undelayed? How much improvement in speed
would result?

c. Add a branch that quits the loop once the multiplier reaches 0.

d. Compare the speed of the three approaches for a multiplier of
0000 0000 0001 1010 0001 0011 0001 1000

★12. You are designing parts of a computer with a memory of 225

20-bit words. Instructions require 1, 2, or 3 words depending
on the address modes. There is a bus structure similar to that of
MODEL. Memory signals are the same as in MODEL, but
reads and writes take two clocks. The first two steps of the DDL
are

1. ADIN � PC; read � 1 ;← ADD25[125;
PC].

2. IR ← DATA.

Note: There are two adders: a 25-bit adder (with no carry-in
or carry-out) for addresses (as used in step 1), and a 20-bit adder
with carry-in and carry-out for all arithmetic. There are thirty-
two 20-bit registers.

10.7 Exercises 577

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 577

Some instructions (OP beginning with 0) have two addresses;
others have only 1 (using only AD1 for address computation).

The following address types are available. Those beginning
with a 0 are complete in the AD field; those beginning with a 1
require an extra word. If both addresses require a second word,
the word associated with AD2 comes first.

000xxxxx Register Addressing

001xxxxx Register indirect (Page zero)

010xxxxx Register indirect with auto-pre-decrementing, where
xxxxx represents a register number

100xxxxx Direct, where xxxxx are the first 5 bits of the
address

101xxxxx Indirect, where xxxxx are the first 5 bits of the
address and the indirect address

110xxxxx AD1: Relative (second word sign-extended)

AD2: Immediate (three words)

111xxxxx unused

The following are the instructions included in the problem (with
flags affected shown):

0000 Add z, s

0001 Add double-precision z, s

0010 Subtract z, s

0011 Subtract double-precision* z, s

0100 Compare z, s

0101 AND z,, s

0110 Move (from AD2 to AD1) z,, s

0111 Move block of 16 words, not for register or
immediate addressing

1000 Increment z, s

578 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

0 3 4 11 12 19

OP AD1 AD2

*For double-precision, the low-order half is at an even address or register number, and
the high-order half is at an odd address or register number. We will assume that the
programmer always enters an even address.

The first word of the instruction has the following format:

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 578

1001 Decrement z, s

1010 Jump to subroutine (unconditional); return address
stored in register specified by right 5 bits of AD2

1011 Jump—condition specified by right 3 bits of AD2

0XX unconditional

100 z

101 z�

110 s

111 s�

a. Write the DDL description of the machine. You may assume
that only legal instructions occur. Make steps undelayed where
possible to make it run reasonably fast. Annotate your DDL!

b. Produce a set of timing tables for all the instructions and all
address types.

13. Design a computer with 128 Mwords of memory that operates
on data of 32 and 64 bits. Memory is word-addressable, that is,
addresses are 27 bits. The memory bus is 64 bits, and thus 2
consecutive words are accessed at once. These are always
aligned so that the first 26 bits of the address of all instructions
and 64-bit data is the same. All data comes from memory, and
all results go to memory. Thus, there are no user registers
comparable to REG in MODEL. There is a bus structure similar
to that of MODEL.

All instructions require 64 bits. Thus, the PC need only be 26
bits (since all instruction addresses end in 0). The instruction
format is as follows (where the details of the first 10 bits are
specified afterward):

10.7 Exercises 579

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

0 9 10 36 37 63

INST Address1 Address2

0 4 5 6 7 8 9

AT2SZOPINST AT1

The result always goes to the location specified by Address1. For
those instructions requiring one operand, its location is specified
by Address2; for those requiring two operands, the first comes
from the location specified by Address1, and the second from the

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 579

location specified by Address2. The size of the data is specified
by the SZ field as follows:

0 32 bits word (W)

1 64 bits double word (DW)

You may assume that all double-word addresses end in 0. Or, if
you prefer, you may ignore the last bit.

The following address types are allowed:

00 Direct

01 Indirect*

10 Indirect with auto-post-incrementing*,†

11 Relative (to the first word of the next instruction)
for Address1
Immediate for Address2 (sign-extended)

Only the following instructions are to be implemented:

00010 ADD‡

00011 SUB(tract)‡

00100 AND

00101 OR

10000 MOV(e)

1010x Convert from the size specified by SZ to the other
size. If the conversion is to a smaller size, then
overflow may occur and the appropriate flags
should be set. When making numbers longer, sign-
extend them.

11 xyz JMP

Jump is available both conditionally and unconditionally.
Address1 is the address of the next instruction. Bits xyz contain
the condition code, as follows:

000 Number specified by Address2 is 0.

001 Number specified by Address2 is nonzero.

010 Number specified by Address2 is negative.

580 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*Indirect addresses occupy the right 27 bits of a word.
†Caution: You add 1 for W and 2 for DW.
‡There are two overflow flags: one to indicate signed overflow (v), and one to indicate
unsigned overflow (c). They can be tested by the jump instruction.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 580

011 Number specified by Address2 is greater than or
equal to 0.

100 Signed overflow (v)

101 Unsigned overflow (c)

110 Unconditional

111 CLL* (subroutine, unconditional)

All others unused
The CPU has a 64-bit adder that is used for all arithmetic

operations including incrementing. Word operations use the right
32 bits. Address computation is also done using the right bits of
that adder. When words (32-bit data) are read from or written to
memory, they may appear on either the first 32 bits of DATA or
the last 32 bits of DATA.You must account for that. There are
two write signals. Both must be made 1 to write 64-bit words. It
has memory connections ADIN[0:26], DATA[0:63],
read, write0 (for even addresses) and write1.

Example—to read word data, the address of which is in EA

ADIN � EA0:25; read � 1;

EA26: WORK ← 00000000, DATA0:31;

EA26: WORK ← 00000000, DATA32:63.

a. Write a complete DDL description of a hard-wired controller
for this machine (including undelayed steps). You may assume
that unused codes and illegal combinations do not happen. You
may add whatever internal registers you need (such as WORK
in MODEL). You are to make this machine run reasonably fast
(that is, take advantage of undelayed steps wherever possible),
without writing very complex code. You must annotate your
solution—at least to show where the steps for each op-code
and each addressing type begin.

b. Compute the timing for each instruction and addressing type.
(The timing should be the same for both sizes of data; but if it
isn’t, you must include that in your computation.) You must
show a diagram or a listing for the steps executed for each.
Display your results in a readable manner. You need not show
a table as we did for MODEL; it would require three dimensions.
Rather, you can show the timing as composed of the sum of

10.7 Exercises 581

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

*The return address is stored in the last word of memory (that is, addresses 7FFFFFF).
No provision is made to nest subroutines. You do not have to check.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 581

three or four parts (for example, instruction fetch plus address
1 plus address 2 plus execution), with a table for each part.
Just make sure that it is clear how you compute the timing for
any instruction.

10.8 CHAPTER TEST (75 MINUTES)

1. (25) For the following values in MODEL:

PC � 12000122

Bits 16:31 of this instruction word are 9402

REG3 � 98765432

M[00000000] � FF000011

M[12121212] � 00000000

Show the changes to registers, flag bits, and memory locations
for each of the following instructions. Also specify the number
of memory references to fetch and execute each instruction.

a. LOD REG2, 12121212

b. STO REG3, z4567

c. ADD REG3, #80112233

d. AND REG3, [12121212]

e. JMP @9000

2. (25) I wish to create a new instruction for MODEL. It only
works for those addressing types that produce a memory
address in EA, but you need not modify the addressing section
to check for that. You will need an extra register, TEMP (if you
don’t want to change any other registers or memory locations).

This instruction, SWP, compares the unsigned number in the
memory location pointed to by EA with the unsigned number in
the location following that. If the second number is greater, it
swaps the two numbers; otherwise, it does nothing. Write the
DDL to implement this instruction beginning at step 60.

Examples: SWP 00001234

Before: 00001234: 7 After: 00001234: 8
00001235: 8 00001235: 7

Before: 00001234: 8 After: 00001234: 8
00001235: 7 00001235: 7

582 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 582

3. (50) You are involved in the design of a small specialized
computer, SMALL. It has a memory of 216 16-bit words. Instruc-
tions may only be executed from the first 210 words; thus the PC
need only be 10 bits and the Address part of the instruction is
large enough to hold a complete address for the jump instruc-
tions. The machine has two registers, REG0 and REG1. There
are no flag bits. The adder adds two 16-bit numbers and
produces a 16-bit result. The bus structure is similar to
MODEL. The instruction format is as follows:

The AT field specifies the addressing type, as follows:

10.8 Chapter Test 583

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

0 1 2 3 4 5 6 15

OP ATR Address

00 Page zero (that is, 6 leading 0’s)

01 Unused

10 Page zero indirect

11 Immediate (only allowed for first four OP codes, zero-
extended)

The OP field specifies one of eight instructions, six of which are
defined as follows:

000 Load register from memory (or immediate)

001 AND number from memory (or immediate) to register

010 Add number from memory (or immediate) to register

011 unused

100 Store number from register into memory

101 unused

110 Jump (to ADDRESS) condition specified by AT*

00 always

01 REG � 0

10 REG
 0

11 REG � 0

* Only Page zero addressing is allowed for the two jump instructions.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 583

111 DJZ*: Decrement register (specified by R) and jump
(to Address) if register had been (before decrement-
ing) 0 (AT is ignored)

The R bit specifies which register.
Write the DDL code for this machine. Assume that the

unused codes and improper combinations (such as store imme-
diate) never occur.

584 Chapter 10 The Design of a Central Processing Unit

1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3
4
5

FIRST PAGES

* Only Page zero addressing is allowed for the two jump instructions.

mar29493_c10_535_584.1.qxd 11/13/06 6:11 PM Page 584

