Chemistry (Chang), 9th Edition

Chapter 10: Chemical Bonding II- Molecular Geometry and Hybridization of Atomic Orbitals

Chapter Summary

1. The VSEPR model for predicting molecular geometry is based on the assumption that valence-shell electron pairs repel one another and tend to stay as far apart as possible.

2. According to the VSEPR model, molecular geometry can be predicted from the number of bonding electron pairs and lone pairs. Lone pairs repel other pairs more forcefully than bonding pairs do and thus distort bond angles from the ideal geometry.

3. Dipole moment is a measure of the charge separation in molecules containing atoms of different electronegativities. The dipole moment of a molecule is the resultant of whatever bond moments are present. Information about molecular geometry can be obtained from dipole moment measurements.

4. There are two quantum mechanical explanations for covalent bond formation: valence bond theory and molecular orbital theory. In valence bond theory, hybridized atomic orbitals are formed by the combination and rearrangement of orbitals from the same atom. The hybridized orbitals are all of equal energy and electron density, and the number of hybridized orbitals is equal to the number of pure atomic orbitals that combine.

5. Valence-shell expansion can be explained by assuming hybridization of s, p, and d orbitals.

6. In sp hybridization, the two hybrid orbitals lie in a straight line; in sp2 hybridization, the three hybrid orbitals are directed toward the corners of a triangle; in sp3 hybridization, the four hybrid orbitals are directed toward the corners of a tetrahedron; in sp3d hybridization, the five hybrid orbitals are directed toward the corners of a trigonal bipyramid; in sp3d2 hybridization, the six hybrid orbitals are directed toward the corners of an octahedron.

7. In an sp2-hybridized atom (for example, carbon), the one unhybridized p orbital can form a pi bond with another p orbital. A carbon-carbon double bond consists of a sigma bond and a pi bond. In an sp-hybridized carbon atom, the two unhybridized p orbitals can form two pi bonds with two p orbitals on another atom (or atoms). A carbon-carbon triple bond consists of one sigma bond and two pi bonds.

8. Molecular orbital theory describes bonding in terms of the combination and rearrangement of atomic orbitals to form orbitals that are associated with the molecule as a whole.

9. Bonding molecular orbitals increase electron density between the nuclei and are lower in energy than individual atomic orbitals. Antibonding molecular orbitals have a region of zero electron density between the nuclei, and an energy level higher than that of the individual atomic orbitals.

10. We write electron configurations for molecular orbitals as we do for atomic orbitals, filling in electrons in the order of increasing energy levels. The number of molecular orbitals always equals the number of atomic orbitals that were combined. The Pauli exclusion principle and Hund’s rule govern the filling of molecular orbitals.

11. Molecules are stable if the number of electrons in bonding molecular orbitals is greater than that in antibonding molecular orbitals.

12. Delocalized molecular orbitals, in which electrons are free to move around a whole molecule or group of atoms, are formed by electrons in p orbitals of adjacent atoms. Delocalized molecular orbitals are an alternative to resonance structures in explaining observed molecular properties.

Glencoe Online Learning CenterScience HomeProduct InfoSite MapContact Us

The McGraw-Hill CompaniesGlencoe